TAILIEUCHUNG - Existence of a solution of the quasi-variational inequality with semicontinuous operator

The paper considers quasi-variational inequalities with point to set operator. The existence of a solution, in the case when the operator of the quasi-variational inequality is semi-continuous and the feasible set is convex and compact, is proved. | Yugoslav Journal of Operations Research 16 (2006), Number 2, 147-152 EXISTENCE OF A SOLUTION OF THE QUASIVARIATIONAL INEQUALITY WITH SEMICONTINUOUS OPERATOR Djurica S. JOVANOV Faculty of Organizational Sciences University of Belgrade, Serbia Received: April 2004 / Accepted: June 2006 Abstract. The paper considers quasi-variational inequalities with point to set operator. The existence of a solution, in the case when the operator of the quasi-variational inequality is semi-continuous and the feasible set is convex and compact, is proved. Keywords: Quasi-variational inequality, existence of a solution, semi continuous operator. 1. INTRODUCTION Let X be a real Hilbert space, U ⊂ X convex closed subset of the space X , Q :U 2U point to set mapping from U to its subsets. The quasi-variational inequality QVI ( F ,U , Q) is the problem: Find u ∈ U such that there exists y ∈ F (u ) satisfying u ∈ Q(u ) and (∀v ∈ Q(u )) ≥ 0 . There are many problems which can be formulated as quasi-variational inequalities, for example: equilibrium problems in economics, impulse control problems, etc. Existence of a solution of the quasi-variational inequality is considered in [1], [3]. In this paper we prove existence of a solution of the quasi-variational inequality QVI ( F ,U , Q) with semi-continuous operator F and continuous mapping Q . If Q(u ) = U the quasi-variational inequality is variational inequality VI ( F ,U ) . In Section 2 some properties of the point to set mapping are considered. In Section 3 some existence theorems are proved. 148 Dj. Jovanov / Existence of a Solution of the Quasi-Variational Inequality 2. DEFINITIONS, NOTATIONS, PRELIMINARIES Let X be a real Hilbert space, U ⊂ X convex, closed subset of the space X , Q : U → 2U point to set mapping. Definition . We say that F : U → 2U is upper semi continuous at u0 if for any open set N such that F (u0 ) ∈ N there exists a neighborhood M of u0 such that F ( M ) ⊂ N . Definition . We say that F : U → 2U is .

TÀI LIỆU MỚI ĐĂNG
165    131    2    22-11-2024
13    150    1    22-11-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.