TAILIEUCHUNG - Spectral expansion for the singular Dirac system with impulsive conditions

In this work, we study the one-dimensional Dirac system on a whole line with impulsive conditions. We construct a spectral function of this system. Using the spectral function, we establish a Parseval equality and spectral expansion formula for such a system. | Turk J Math (2018) 42: 2527 – 2545 © TÜBİTAK doi: Turkish Journal of Mathematics Research Article Spectral expansion for the singular Dirac system with impulsive conditions Bilender PAŞAOĞLU ALLAHVERDİEV1 ,, Hüseyin TUNA2,∗, Department of Mathematics, Faculty of Science, Süleyman Demirel University, Isparta, Turkey 2 Department of Mathematics, Faculty of Science, Mehmet Akif Ersoy University, Burdur, Turkey 1 Received: • Accepted/Published Online: • Final Version: Abstract: In this work, we study the one-dimensional Dirac system on a whole line with impulsive conditions. We construct a spectral function of this system. Using the spectral function, we establish a Parseval equality and spectral expansion formula for such a system. Key words: Dirac operator, impulsive conditions, singular point, spectral function, Parseval equality, spectral expansion 1. Introduction Many problems of engineering interest are governed by partial differential equations. When we seek a solution of a partial differential equation by separation of variables, it leads to the problem of expanding an arbitrary function as a series of eigenfunctions. The method relies on the completeness of the eigenfunctions corresponding to one of the variables. Thus, spectral expansion theorems are important in mathematics. Using several methods, the eigenfunction expansion is obtained, including the methods of integral equations, contour integration, and finite difference (see [19], [32]). The Dirac operators play an important role in the theory of relativistic quantum mechanics because fundamental physics of relativistic quantum mechanics was formulated by the Dirac operators. For example, they predict the existence of a positron and elucidate the origin of spin 1/2 of an electron. We refer the reader to [30]. Discontinuous (or impulsive) boundary value problems have been extensively investigated in recent .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.