TAILIEUCHUNG - Existence of periodic solutions for second order rayleigh equations with piecewise constant argument

Based on a continuation theorem of Mawhin, periodic solutions are found for the second-order Rayleigh equation with piecewise constant argument. In this paper we study a slightly more general second-order Rayleigh equation with piecewise constant argument of the form. | Turk J Math 30 (2006) , 57 – 74. ¨ ITAK ˙ c TUB Existence of Periodic Solutions for Second Order Rayleigh Equations With Piecewise Constant Argument Gen-qiang Wang, Sui Sun Cheng Abstract Based on a continuation theorem of Mawhin, periodic solutions are found for the second-order Rayleigh equation with piecewise constant argument. Key Words: Rayleigh equation, deviating argument, piecewise constant argument, periodic solution, Mawhin’s continuation theorem. 1. Introduction Qualitative behaviors of first order delay differential equations with piecewise constant arguments are the subject of many investigations (see, . [1–19]), while those of higher order equations are not. However, there are reasons for studying higher order equations with piecewise constant arguments. Indeed, as mentioned in [10], a potential application of these equations is in the stabilization of hybrid control systems with feedback delay, where a hybrid system is one with a continuous plant and with a discrete (sampled) controller. As an example, suppose a moving particle is subjected to damping and a restoring controller −φ(x[t − k]) which acts at sampled time [t − k], then the equation of motion is of the form x00 (t) + a (t) x0 (t) = −φ(x[t − k]). Mathematics Subject Classification: 34K13 57 WANG, CHENG In this paper we study a slightly more general second-order Rayleigh equation with piecewise constant argument of the form x00 (t) + f (t, x0 (t)) + g (t, x ([t − k])) = 0, (1) where [·] is the greatest-integer function, k is a positive integer, f (t, x) and g (t, x) are continuous on R2 such that for (t, x) ∈ R2 , f (t + ω, x) = f (t, x) and g (t + ω, x) = g (t, x) , for some positive integer ω. We also require f(t, 0) = 0 for all t in R. By a solution of (1) we mean a function x (t) which is defined on R and which satisfies the conditions (i) x0 (t) is continuous on R, (ii) x0 (t) is differentiable at each point t ∈ R, with the possible exception of the points [t] ∈ R where .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.