TAILIEUCHUNG - An approximate secular equation of rayleigh waves in an elastic half space coated by a thin weakly inhomogeneous elastic layer

. In this paper, the propagation of Rayleigh waves in a homogeneous isotropic elastic half-space coated with a thin weakly inhomogeneous isotropic elastic layer is investigated. The material parameters of the layer is assumed to depend arbitrarily continuously on the thickness variable. The contact between the layer and the half space is perfectly bonded. | Vietnam Journal of Mechanics, VAST, Vol. 38, No. 1 (2016), pp. 15 – 25 DOI: AN EFFICIENT NUMERICAL PROCEDURE FOR CALCULATING PERIODIC VIBRATIONS OF ELASTIC MECHANISMS Nguyen Van Khang, Nguyen Phong Dien∗ , Nguyen Sy Nam 1 Hanoi University of Science and Technology, Vietnam ∗ E-mail: Received February 23, 2015 Abstract. This paper proposes a numerical procedure based on the well-known Newmark integration method to determine initial conditions for the periodic solution of a system of linear differential equations with time-periodic coefficients. Based on this, steady-state periodic vibrations of mechanisms with elastic elements governed by linearized differential equations with time-periodic coefficients can be conveniently calculated. The proposed procedure is demonstrated by a dynamic model of a planar four-bar mechanism with the flexible coupler. Keywords: Steady-state vibration, elastic mechanism, Newmark integration method, mode superposition method, dynamic stability. 1. INTRODUCTION In high-speed machines, the motion of the transmission mechanisms is often composed of a combination of rigid body motion and elastic deformation [1, 2]. A review on the vibration and stability behavior of mechanisms with elastic links represents an update to earlier literatures surveys on this subject [3–5]. Many researchers have tried to represent the vibration of such mechanisms in a more and more realistic form. Up to now, the following models are used for modeling of flexible links of mechanisms: continuum models [6, 7], lumped parameter models [8, 9], finite element models [10–14]. In general, the mathematical formulation of this vibration problem is quite a complicated nonlinear differential equation, for which an exact solution is practically impossible. It is possible to calculate the transient solutions by the numerical methods. The linearized equations of motion of an elastic mechanism that performs the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.