TAILIEUCHUNG - A formula to calculate pruning threshold for the part of speech tagging problem

One of crucial factors in the POS (Part-ofSpeech) tagging approaches based on the statistical method is the processing time. In this paper, we propose an approach to calculate the pruning threshold, which can apply into the Viterbi algorithm of Hidden Markov model for tagging the texts in the natural language processing. Experiment on the words on the tag of the Wall Street Journal corpus showed that our proposed solution is satisfactory. | Journal of Science and Technology 54 (3A) (2016) 64-73 A FORMULA TO CALCULATE PRUNING THRESHOLD FOR THE PART-OF-SPEECH TAGGING PROBLEM Nguyen Chi Hieu Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City Email: nchieu@ Received: 1 May 2016; Accepted for Publication: 15 July 2016 ABSTRACT The exact tagging of the words in the texts is a very important task in the natural language processing. It can support parsing the text, contribute to the solution of the polysemous word, and help to access a semantic information, etc. One of crucial factors in the POS (Part-ofSpeech) tagging approaches based on the statistical method is the processing time. In this paper, we propose an approach to calculate the pruning threshold, which can apply into the Viterbi algorithm of Hidden Markov model for tagging the texts in the natural language processing. Experiment on the words on the tag of the Wall Street Journal corpus showed that our proposed solution is satisfactory. Keywords: Hidden Markov model, Part-of-speech tagging, Viterbi algorithm, Beam search. 1. INTRODUCTION The tagging is defined as an automatic assignment of descriptors (or tags) to input tokens. Part-of-speech (POS) tagging is a selecting process to find the most likely sequence of syntactic categories for words in a sentence. It is a very important problem in natural language processing. Several approaches have been developed [1], which include taggers based on handwritten rules, n-gram automatically derived from tagged text corpora, Hidden Markov models, symbolic language models, machine learning, and hybrid taggers [2]. Among the above approaches, one based on the Hidden Markov model (HMM) can offer prominent results [3]. Especially, when using the Viterbi algorithm, it can achieve an accuracy rate of over 95 percent [4]. However, its complexity is a challenge. For a problem involving T words and K lexical categories, the algorithm which is

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.