TAILIEUCHUNG - Bài giảng Phương pháp tính: Chương 2 - TS. Nguyễn Quốc Lân

Bài giảng Phương pháp tính: Chương 2 trình bày hệ phương trình tuyến tính Ax = b. Các nội dung cụ thể được trình bày trong chương bao gồm: Các phương pháp chính xác, các phương pháp lặp, số điều kiện – hệ điều kiện xấu. | BỘ MÔN TOÁN ỨNG DỤNG - ĐHBK ------------------------------------------------------------------------------------- PHƯƠNG PHÁP TÍNH – BG SINH VIÊN CHƯƠNG 2 HỆ PHƯƠNG TRÌNH TUYẾN TÍNH Ax = b TS. NGUYỄN QUỐC LÂN (2/2006) NỘI DUNG --------------------------------------------------------------------------------------------------------------------------- A- CÁC PHƯƠNG PHÁP CHÍNH XÁC 1- PHƯƠNG PHÁP KHỬ GAUSS (PHẦN TỬ TRỤ) 2- PHÂN TÍCH NHÂN TỬ A = LU 3- PHÂN TÍCH CHOLESKY B- CÁC PHƯƠNG PHÁP LẶP 1- LẶP JACOBI 2- LẶP GAUSS - SEIDEL C- SỐ ĐIỀU KIỆN – HỆ ĐIỀU KIỆN XẤU TỔNG QUAN -------------------------------------------------------------------------------------------------------------------------------- Hệ n phương trình bậc 1 (tuyến tính), n ẩn Dạng Ax = b: Hàng i: hi = [ai1 ai2 ain]T. Biến đổi sơ cấp trên hàng hi hi + khj: Nhân hj với k rồi cộng xuống hi (chỉ hi thay đổi) Đơn giản: Hệ tam giác Giải lùi PHƯƠNG PHÁP KHỬ GAUSS ----------------------------------------------------------------------------------------------------------------------------------- Giải thuật: Biến đổi sơ cấp trên hàng A: trên Giải lùi VD: Giải hệ Xây dựng ma trận mở rộng Khử cột 1 với hệ số khử m1j GIẢI LÙI & PHẦN TỬ TRỤ ------------------------------------------------------------------------------------------------------------------------------- Điều kiện: Khử cột 1: a11(1) 0 & Khử cột 2: a22(2) 0 & Giải lùi: a33(3) 0 Phần tử trụ (pivot) akk 0 Giải lùi với hệ tam giác trên thu được: Khử cột 2 với hệ số khử: KHỬ GAUSS VỚI LỆNH MAPLE -------------------------------------------------------------------------------------------------------------------------------- VD: Giải hệ > A := matrix(2,3,[2, 3, 4, 1, 2, 3]); # Nhập ma trận > m21 := A[2,1]/A[1,1]; # Tính hệ số khử > A := addrow(A,1,2,–m21) ; # Cộng hàng h2 h2 – m21h1 > A := swaprow(A,1,2) ; # Nếu cần thiết, đổi hàng h2 h1 > x := backsup(A) ; # Hệ đã ở dạng tam giác trên: Giải lùi > AA := gausselim(A); # Lệnh gộp khử

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.