TAILIEUCHUNG - Luyện thi Đại học môn Toán: Mặt cầu trong không gian (Phần 1) - Thầy Đặng Việt Hùng

Tài liệu "Luyện thi Đại học môn Toán: Mặt cầu trong không gian (Phần 1) - Thầy Đặng Việt Hùng" tóm lược nội dung cần thiết và cung cấp các bài tập ví dụ hữu ích, giúp các bạn củng cố và nắm kiến thức về mặt cầu trong không gian thật hiệu quả. | Khóa học LTĐH môn Toán - Thầy ĐẶNG VIỆT HÙNG Facebook LyHung95 13. MẶT CẦU TRONG KHÔNG GIAN - P1 Thầy Đặng Việt Hùng I. LẬP PHƯƠNG TRÌNH MẶT CẦU Phương trình chính tắc của mặt cầu 5 x - a 2 y - b 2 z - cÝ R2 Phương trình tổng quát của mặt cầu S x2 yy zz 2ax 2by 2cz d 0 với tâm I a b c R Va2 b2 c2 - d Chú ý A B thuộc mặt cầu S IA IB R Ví dụ 1 ĐVH . Cho họ mặt cong Sm có phương trình Sm x2 yy z2 - 2mx - 4 m - 2 y mz - 3m 1 0 a Tìm điều kiện của m để Sm là một họ mặt cầu. b Tìm m để Sm là phương trình mặt cầu có bán kính R V62. Đ s m -2. Ví dụ 2 ĐVH . Cho phương trình Sm x2 y2 z2 4 m 1 x 2my - 6mz -m 1 0 a Tìm m để Sm là phương trình mặt cầu S I R . b Tìm m để mặt cầu S I R có bán kính R y ĩĩ Đ s m 1. 2 Ví dụ 3 ĐVH . Lập phương trình mặt cầu S biết a Tâm I thuộc Oy đi qua A 1 1 3 B -1 3 3 . Đ s I 0 2 0 . b Tâm I thuộc Oz đi qua A 2 1 1 B 4 -1 -1 . Đ s I 0 0 -3 . x 1 1 c Tâm I thuộc d j y t và đi qua A 3 0 -1 B 1 4 1 . z 2t Đ s I 2 1 2 R d 11 x - 2 y -1 z d Tâm Ithuộc d Ệ- và đi qua A 3 6 -1 B 5 4 -3 . -1 1 2 Đ s I 1 2 2 R 3 5. Ví dụ 4 ĐVH . Lập phương trình mặt cầu S biết a đi qua A 2 4 -1 B 1 -4 -1 C 2 4 3 D 2 2 -1 3 V . 1 V 5 Đ s S I x-2 y-4 1 z- I 4. b đi qua A 3 3 0 B 3 0 3 C 0 3 3 D 3 3 -3 _ 3 V 3 V 3 V 27 Đ s S lx - 31 l y - 31 z - 31 27. I 2 ự 2 2 4 Tham gia các gói học trực tuyến Pro S - Pro Adv môn Toán tại để đạt điểm số cao nhất trong kỳ TSĐH Facebook LyHung95 Khóa học LTĐH môn Toán - Thầy ĐẶNG VIỆT HÙNG Ví dụ 5 ĐVH . Lập phương trình mặt cầu S biết a đi qua A 2 0 1 B 1 0 0 C 1 1 1 và I e P x y z - 2 0 Đ s S x -1 2 y2 z -1 2 1. b đi qua A -2 4 1 B 3 1 -3 C -5 0 0 và I e P 2x y - z 3 0 Đ s S x -1 2 y 2 2 z - 3 2 49. c đi qua A 1 1 0 B 2 -4 -2 C 3 -1 2 và I e P x y z -1 0 Đ s S x -1 2 y 2 2 z z 9. . 7 - 1 1 3 d đi qua AI 1 3 2 I BI -2 0 2 CI -1 2 0 I và I e P x y 2z - 4 0 29 Đ s S x2 y 1 2 z-2 2 Ví dụ 6 ĐVH . Trong các phương trình sau đây phương trình nào là phương trình của mặt cầu khi đó chỉ rõ toạ độ tâm và bán kính của nó a S x2 y2 z2 - 2x - 4y .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.