TAILIEUCHUNG - Báo cáo khoa học: "Bootstrapped Training of Event Extraction Classifiers"

Most event extraction systems are trained with supervised learning and rely on a collection of annotated documents. Due to the domain-specificity of this task, event extraction systems must be retrained with new annotated data for each domain. In this paper, we propose a bootstrapping solution for event role filler extraction that requires minimal human supervision. We aim to rapidly train a state-of-the-art event extraction system using a small set of “seed nouns” for each event role, a collection of relevant (in-domain) and irrelevant (outof-domain) texts, and a semantic dictionary. . | Bootstrapped Training of Event Extraction Classifiers Ruihong Huang and Ellen Riloff School of Computing University of Utah Salt Lake City UT 84112 huangrh riloff @ Abstract Most event extraction systems are trained with supervised learning and rely on a collection of annotated documents. Due to the domain-specificity of this task event extraction systems must be retrained with new annotated data for each domain. In this paper we propose a bootstrapping solution for event role filler extraction that requires minimal human supervision. We aim to rapidly train a state-of-the-art event extraction system using a small set of seed nouns for each event role a collection of relevant in-domain and irrelevant out-of-domain texts and a semantic dictionary. The experimental results show that the bootstrapped system outperforms previous weakly supervised event extraction systems on the MUC-4 data set and achieves performance levels comparable to supervised training with 700 manually annotated documents. 1 Introduction Event extraction systems process stories about domain-relevant events and identify the role fillers of each event. A key challenge for event extraction is that recognizing role fillers is inherently contextual. For example a PERSON can be a perpetrator or a victim in different contexts . John Smith assassinated the mayor vs. John Smith was assassinated . Similarly any COMPANY can be an acquirer or an acquiree depending on the context. Many supervised learning techniques have been used to create event extraction systems using gold standard answer key event templates fortraining . Freitag 1998a Chieu and Ng 2002 Maslennikov and Chua 2007 . However manually generating answer keys for event extraction is time-consuming and tedious. And more importantly event extraction annotations are highly domain-specific so new annotations must be obtained for each domain. The goal of our research is to use bootstrapping techniques to automatically train a .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.