TAILIEUCHUNG - Báo cáo khoa học: "Text Summarization Model based on Maximum Coverage Problem and its Variant"

We discuss text summarization in terms of maximum coverage problem and its variant. We explore some decoding algorithms including the ones never used in this summarization formulation, such as a greedy algorithm with performance guarantee, a randomized algorithm, and a branch-andbound method. On the basis of the results of comparative experiments, we also augment the summarization model so that it takes into account the relevance to the document cluster. | Text Summarization Model based on Maximum Coverage Problem and its Variant Hiroya Takamura and Manabu Okumura Precision and Intelligence Laboratory Tokyo Institute of Technology 4259 Nagatsuta Midori-ku Yokohama 226-8503 takamura@ oku@ Abstract We discuss text summarization in terms of maximum coverage problem and its variant. We explore some decoding algorithms including the ones never used in this summarization formulation such as a greedy algorithm with performance guarantee a randomized algorithm and a branch-and-bound method. On the basis of the results of comparative experiments we also augment the summarization model so that it takes into account the relevance to the document cluster. Through experiments we showed that the augmented model is superior to the best-performing method of DUC 04 on ROUGE-1 without stopwords. 1 Introduction Automatic text summarization is one of the tasks that have long been studied in natural language processing. This task is to create a summary or a short and concise document that describes the content of a given set of documents Mani 2001 . One well-known approach to text summarization is the extractive method which selects some linguistic units . sentences from given documents in order to generate a summary. The extractive method has an advantage that the grammaticality is guaranteed at least at the level of the linguistic units. Since the actual generation of linguistic expressions has not achieved the level of the practical use we focus on the extractive method in this paper especially the method based on the sentence extraction. Most of the extractive summarization methods rely on sequentially solving binary classification problems of determining whether each sentence should be selected or not. In such sequential methods however the viewpoint regarding whether the summary is good as a whole is not taken into consideration although a summary conveys information as a whole. We represent text .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.