TAILIEUCHUNG - Báo cáo khoa học: "Graph-based Ranking Algorithms for Sentence Extraction, Applied to Text Summarization"

This paper presents an innovative unsupervised method for automatic sentence extraction using graphbased ranking algorithms. We evaluate the method in the context of a text summarization task, and show that the results obtained compare favorably with previously published results on established benchmarks. | Graph-based Ranking Algorithms for Sentence Extraction Applied to Text Summarization Rada Mihalcea Department of Computer Science University of North Texas rada@ Abstract This paper presents an innovative unsupervised method for automatic sentence extraction using graphbased ranking algorithms. We evaluate the method in the context of a text summarization task and show that the results obtained compare favorably with previously published results on established benchmarks. 1 Introduction Graph-based ranking algorithms such as Klein-berg s HITS algorithm Kleinberg 1999 or Google s PageRank Brin and Page 1998 have been traditionally and successfully used in citation analysis social networks and the analysis of the link-structure of the World Wide Web. In short a graph-based ranking algorithm is a way of deciding on the importance of a vertex within a graph by taking into account global information recursively computed from the entire graph rather than relying only on local vertex-specific information. A similar line of thinking can be applied to lexical or semantic graphs extracted from natural language documents resulting in a graph-based ranking model called TextRank Mihalcea and Tarau 2004 which can be used for a variety of natural language processing applications where knowledge drawn from an entire text is used in making local ranking selection decisions. Such text-oriented ranking methods can be applied to tasks ranging from automated extraction of keyphrases to extractive summarization and word sense disambiguation Mihalcea et al. 2004 . In this paper we investigate a range of graphbased ranking algorithms and evaluate their application to automatic unsupervised sentence extraction in the context of a text summarization task. We show that the results obtained with this new unsupervised method are competitive with previously developed state-of-the-art systems. 2 Graph-Based Ranking Algorithms Graph-based ranking algorithms are essentially a way of .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.