TAILIEUCHUNG - Báo cáo khoa học: "Contextual Phrase-Level Polarity Analysis using Lexical Affect Scoring and Syntactic N-grams"

We present a classifier to predict contextual polarity of subjective phrases in a sentence. Our approach features lexical scoring derived from the Dictionary of Affect in Language (DAL) and extended through WordNet, allowing us to automatically score the vast majority of words in our input avoiding the need for manual labeling. We augment lexical scoring with n-gram analysis to capture the effect of context. We combine DAL scores with syntactic constituents and then extract ngrams of constituents from all sentences. . | Contextual Phrase-Level Polarity Analysis using Lexical Affect Scoring and Syntactic N-grams Apoorv Agarwal Department of Computer Science Columbia University New York USA aa2644@ Fadi Biadsy Department of Computer Science Columbia University New York USA fadi@ Kathleen R. Mckeown Department of Computer Science Columbia University New York USA kathy@ Abstract We present a classifier to predict contextual polarity of subjective phrases in a sentence. Our approach features lexical scoring derived from the Dictionary of Affect in Language DAL and extended through WordNet allowing us to automatically score the vast majority of words in our input avoiding the need for manual labeling. We augment lexical scoring with n-gram analysis to capture the effect of context. We combine DAL scores with syntactic constituents and then extract ngrams of constituents from all sentences. We also use the polarity of all syntactic constituents within the sentence as features. Our results show significant improvement over a majority class baseline as well as a more difficult baseline consisting of lexical n-grams. 1 Introduction Sentiment analysis is a much-researched area that deals with identification of positive negative and neutral opinions in text. The task has evolved from document level analysis to sentence and phrasal level analysis. Whereas the former is suitable for classifying news . editorials vs. reports into positive and negative the latter is essential for question-answering and recommendation systems. A recommendation system for example must be able to recommend restaurants or movies books etc. based on a variety of features such as food service or ambience. Any single review sentence may contain both positive and negative opinions evaluating different features of a restaurant. Consider the following sentence 1 where the writer expresses opposing sentiments towards food and service of a restaurant. In tasks such as this .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.