TAILIEUCHUNG - Báo cáo khoa học: "Corpus-Based Linguistic Indicators for Aspectual Classification"

Fourteen indicators that measure the frequency of lexico-syntactic phenomena linguistically related to aspectual class are applied to aspectual classification. This group of indicators is shown to improve classification performance for two aspectual distinctions, stativity and completedness (., telicity), over unrestricted sets of verbs from two corpora. Several of these indicators have not previously been discovered to correlate with aspect. | Corpus-Based Linguistic Indicators for Aspectual Classification Eric V. Siegel Department of Computer Science Columbia University New York NY 10027 Abstract Fourteen indicators that measure the frequency of lexico-syntactic phenomena linguistically related to aspectual class are applied to aspectual classification. This group of indicators is shown to improve classification performance for two aspectual distinctions stativity and com-pletedness . telicity over unrestricted sets of verbs from two corpora. Several of these indicators have not previously been discovered to correlate with aspect. 1 Introduction Aspectual classification maps clauses to a small set of primitive categories in order to reason about time. For example events such as You called your father are distinguished from states such as You resemble your father. These two high-level categories correspond to primitive distinctions in many domains . the distinction between procedure and diagnosis in the medical domain. Aspectual classification further distinguishes events according to completedness . felicity which determines whether an event reaches a culmination point in time at which a new state is introduced. For example I made a fire is culminated since a new state is introduced - something is made whereas I gazed at the sunset is non-culminated. Aspectual classification is necessary for interpreting temporal modifiers and assessing temporal entailments Vendler 1967 Dowty 1979 Moens and Steedman 1988 Dorr 1992 and is therefore a necessary component for applications that perform certain natural language interpretation natural language generation summarization information retrieval and machine translation tasks. Aspect introduces a large-scale domaindependent lexical classification problem. Although an aspectual lexicon of verbs would suffice to classify many clauses by their main verb only a verb s primary class is often domaindependent Siegel 1998b . Therefore it is necessary to produce a .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.