TAILIEUCHUNG - Báo cáo khoa học: "Trainable Generation of Big-Five Personality Styles through Data-driven Parameter Estimation"

Previous work on statistical language generation has primarily focused on grammaticality and naturalness, scoring generation possibilities according to a language model or user feedback. More recent work has investigated data-driven techniques for controlling linguistic style without overgeneration, by reproducing variation dimensions extracted from corpora. Another line of work has produced handcrafted rule-based systems to control specific stylistic dimensions, such as politeness and personality. . | Trainable Generation of Big-Five Personality Styles through Data-driven Parameter Estimation Francois Mairesse Cambridge University Engineering Department Trumpington Street Cambridge CB2 1PZ United Kingdom farm2@ Marilyn Walker Department of Computer Science University of Sheffield Sheffield S1 4Dp United Kingdom lynwalker@ Abstract Previous work on statistical language generation has primarily focused on grammaticality and naturalness scoring generation possibilities according to a language model or user feedback. More recent work has investigated data-driven techniques for controlling linguistic style without overgeneration by reproducing variation dimensions extracted from corpora. Another line of work has produced handcrafted rule-based systems to control specific stylistic dimensions such as politeness and personality. This paper describes a novel approach that automatically learns to produce recognisable variation along a meaningful stylistic dimension personality without the computational cost incurred by overgeneration techniques. We present the first evaluation of a data-driven generation method that projects multiple personality traits simultaneously and on a continuous scale. We compare our performance to a rule-based generator in the same domain. 1 Introduction Over the last 20 years statistical language models SLMs have been used successfully in many tasks in natural language processing and the data available for modeling has steadily grown Lapata and Keller 2005 . Langkilde and Knight 1998 first applied SLMs to statistical natural language generation SNLG showing that high quality paraphrases can be generated from an underspecified representation of meaning by first applying a very underconstrained rule-based overgeneration phase whose outputs are then ranked by an SLM scoring phase. Since then research in SNLG has explored a range of models for both dialogue and text generation. One line of work has primarily focused on .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.