TAILIEUCHUNG - Báo cáo khoa học: "Generalized Interpolation in Decision Tree LM"

In the face of sparsity, statistical models are often interpolated with lower order (backoff) models, particularly in Language Modeling. In this paper, we argue that there is a relation between the higher order and the backoff model that must be satisfied in order for the interpolation to be effective. We show that in n-gram models, the relation is trivially held, but in models that allow arbitrary clustering of context (such as decision tree models), this relation is generally not satisfied. . | Generalized Interpolation in Decision Tree LM Denis Filimonovfi ỆHuman Language Technology Center of Excellence Johns Hopkins University den@ Mary Harperf fDepartment of Computer Science University of Maryland College Park mharper@ Abstract In the face of sparsity statistical models are often interpolated with lower order backoff models particularly in Language Modeling. In this paper we argue that there is a relation between the higher order and the backoff model that must be satisfied in order for the interpolation to be effective. We show that in n-gram models the relation is trivially held but in models that allow arbitrary clustering of context such as decision tree models this relation is generally not satisfied. Based on this insight we also propose a generalization of linear interpolation which significantly improves the performance of a decision tree language model. 1 Introduction A prominent use case for Language Models LMs in NLP applications such as Automatic Speech Recognition ASR and Machine Translation MT is selection of the most fluent word sequence among multiple hypotheses. Statistical LMs formulate the problem as the computation of the model s probability to generate the word sequence w1w2 . wm w assuming that higher probability corresponds to more fluent hypotheses. LMs are often represented in the following generative form m p wm Ị Ị p wiiw1-1 i 1 In the following discussion we will refer to the function p wi wi-1 as a language model. 620 Note the context space for this function wi-1 is arbitrarily long necessitating some independence assumption which usually consists of reducing the relevant context to n 1 immediately preceding tokens p wi w1-1 p izn j These distributions are typically estimated from observed counts of n-grams w -ra 1 in the training data. The context space is still far too large therefore the models are recursively smoothed using lower order distributions. For instance in a widely used n-gram LM the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.