TAILIEUCHUNG - Báo cáo khoa học: "Identifying Sarcasm in Twitter: A Closer Look"

Sarcasm transforms the polarity of an apparently positive or negative utterance into its opposite. We report on a method for constructing a corpus of sarcastic Twitter messages in which determination of the sarcasm of each message has been made by its author. We use this reliable corpus to compare sarcastic utterances in Twitter to utterances that express positive or negative attitudes without sarcasm. We investigate the impact of lexical and pragmatic factors on machine learning effectiveness for identifying sarcastic utterances and we compare the performance of machine learning techniques and human judges on this task. Perhaps unsurprisingly, neither the. | Identifying Sarcasm in Twitter A Closer Look Roberto González-Ibánez Smaranda Muresan Nina Wacholder School of Communication Information Rutgers The State University of New Jersey 4 Huntington St New Brunswick NJ 08901 rgonzal smuresan ninwac @ Abstract Sarcasm transforms the polarity of an apparently positive or negative utterance into its opposite. We report on a method for constructing a corpus of sarcastic Twitter messages in which determination of the sarcasm of each message has been made by its author. We use this reliable corpus to compare sarcastic utterances in Twitter to utterances that express positive or negative attitudes without sarcasm. We investigate the impact of lexical and pragmatic factors on machine learning effectiveness for identifying sarcastic utterances and we compare the performance of machine learning techniques and human judges on this task. Perhaps unsurprisingly neither the human judges nor the machine learning techniques perform very well. 1 Introduction Automatic detection of sarcasm is still in its infancy. One reason for the lack of computational models has been the absence of accurately-labeled naturally occurring utterances that can be used to train machine learning systems. Microblogging platforms such as Twitter which allow users to communicate feelings opinions and ideas in short messages and to assign labels to their own messages have been recently exploited in sentiment and opinion analysis Pak and Paroubek 2010 Davidov et al. 2010 . In Twitter messages can be an 581 notated with hashtags such as bicycling happy and sarcasm. We use these hashtags to build a labeled corpus of naturally occurring sarcastic positive and negative tweets. In this paper we report on an empirical study on the use of lexical and pragmatic factors to distinguish sarcasm from positive and negative sentiments expressed in Twitter messages. The contributions of this paper include i creation of a corpus that includes only sarcastic utterances

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.