TAILIEUCHUNG - Báo cáo khoa học: "How Much Can We Gain from Supervised Word Alignment"

Word alignment is a central problem in statistical machine translation (SMT). In recent years, supervised alignment algorithms, which improve alignment accuracy by mimicking human alignment, have attracted a great deal of attention. The objective of this work is to explore the performance limit of supervised alignment under the current SMT paradigm. | How Much Can We Gain from Supervised Word Alignment Jinxi Xu and Jinying Chen Raytheon BBN Technologies 10 Moulton Street Cambridge MA 02138 USA jxu j chen @ Abstract Word alignment is a central problem in statistical machine translation SMT . In recent years supervised alignment algorithms which improve alignment accuracy by mimicking human alignment have attracted a great deal of attention. The objective of this work is to explore the performance limit of supervised alignment under the current SMT paradigm. Our experiments used a manually aligned Chinese-English corpus with 280K words recently released by the Linguistic Data Consortium LDC . We treated the human alignment as the oracle of supervised alignment. The result is surprising the gain of human alignment over a state of the art unsupervised method GIZA is less than 1 point in BLEU. Furthermore we showed the benefit of improved alignment becomes smaller with more training data implying the above limit also holds for large training conditions. 1 Introduction Word alignment is a central problem in statistical machine translation SMT . A recent trend in this area of research is to exploit supervised learning to improve alignment accuracy by mimicking human alignment. Studies in this line of work include Haghighi et al. 2009 DeNero and Klein 2010 Setiawan et al. 2010 just to name a few. The objective of this work is to explore the performance limit of supervised word alignment. 165 More specifically we would like to know what magnitude of gain in MT performance we can expect from supervised alignment over the state of the art unsupervised alignment if we have access to a large amount of parallel data. Since alignment errors have been assumed to be a major hindrance to good MT an answer to such a question might help us find new directions in MT research. Our method is to use human alignment as the oracle of supervised learning and compare its performance against that of GIZA Och and Ney 2003 a state of .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.