TAILIEUCHUNG - Báo cáo khoa học: "Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing"

In this paper, we present a novel approach which incorporates the web-derived selectional preferences to improve statistical dependency parsing. Conventional selectional preference learning methods have usually focused on word-to-class relations, ., a verb selects as its subject a given nominal class. | Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing Guangyou Zhou Jun Zhao Kang Liu and Li Cai National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun East Road Beijing 100190 China gyzhou jzhao kliu lcai @ Abstract In this paper we present a novel approach which incorporates the web-derived selec-tional preferences to improve statistical dependency parsing. Conventional selectional preference learning methods have usually focused on word-to-class relations . a verb selects as its subject a given nominal class. This paper extends previous work to word-to-word selectional preferences by using webscale data. Experiments show that web-scale data improves statistical dependency parsing particularly for long dependency relationships. There is no data like more data performance improves log-linearly with the number of parameters unique N-grams . More importantly when operating on new domains we show that using web-derived selectional preferences is essential for achieving robust performance. 1 Introduction Dependency parsing is the task of building dependency links between words in a sentence which has recently gained a wide interest in the natural language processing community. With the availability of large-scale annotated corpora such as Penn Treebank Marcus et al. 1993 it is easy to train a high-performance dependency parser using supervised learning methods. However current state-of-the-art statistical dependency parsers McDonald et al. 2005 McDonald and Pereira 2006 Hall et al. 2006 tend to have Correspondence author jzhao@ 1556 lower accuracies for longer dependencies McDonald and Nivre 2007 . The length of a dependency from word wi to word Wj is simply equal to I i j I. Longer dependencies typically represent the modifier of the root or the main verb internal dependencies of longer NPs or PP-attachment in a sentence. Figure 1 shows the Fl score1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.