TAILIEUCHUNG - Numerical Methods for Ordinary Dierential Equations Episode 9

Tham khảo tài liệu 'numerical methods for ordinary dierential equations episode 9', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 264 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS where the coefficient of yn-1 is seen to be the stability function value R hL 1 hLb I - hLA -11. By rearranging this expression we see that yn R hL yyn-1 - g xn-iỸj g xn-i hb G hLb I - hLA -1 hAG - G - g xn-1 R hL yn-1 - g xn-1 g xn - Ễ0 - hLb I - hLA 1Ễ where Ễ0 h g xn-1 h d - h big xn-1 hci J0 i 1 is the non-stiff error term given approximately by 362d and 6 is the vector of errors in the individual stages with component i given by h g x n-i hfi d - h aijg x n-i hcj . Jo j i If L has a moderate size then hLb I - hLA -1e can be expanded in the form hLb I hLA h2L2A2 e and error behaviour of order p can be verified term by term. On the other hand if hL is large a more realistic idea of the error is found using the expansion I - hLA -1 - hA-A- - and we obtain an approximation to the error g xn - yn given by g xn - yn R hL g xn-1 - yn-1 Ễ0 - b A-1e - h-1L-1b A-2e - h-2L-2b A-3e------. Even though the stage order may be low the final stage may have order p. This will happen for example if the final row of A is identical to the vector b . In this special case the term b A-1e will cancel 60. In other cases the contributions from b A-1e might dominate 60 if the stage order is less than the order. Define nn Ễ0 hLb I - hLA -1e n 0 RUNGE-KUTTA METHODS 265 with no defined as the initial error g x0 y0. The accumulated truncation error after n steps is equal to n n Y R hl- ni 2R n im. i 0 i 0 There are three important cases which arise in a number of widely use methods. If R o 0 as in the Radau IA Radau IIA and Lobatto IIIC methods or for that matter in any L-stable method then we can regard the global truncation error as being just the error in the final step. Thus if the local error is O hq 1 then the global error would also be O hq 1 . On the other hand for the Gauss method with s stages R o 1 s. For the methods for which R o 1 then we can further approximate the global error as the integral of the local truncation .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.