TAILIEUCHUNG - Đề tài " Kloosterman identities over a quadratic extension "

We prove an identity of Kloosterman integrals which is the fundamental lemma of a relative trace formula for the general linear group in n variables. 1. Introduction One of the simplest examples of Langlands’ principle of functoriality is the quadratic base change. Namely, let E/F be a quadratic extension of global fields and z → z the corresponding Galois conjugation. The base change associates to every automorphic representation π of GL(n, F) an automorphic representation Π of GL(n,E). If n = 1 then π is an id`ele class character and Π(z) = π(zz) | Annals of Mathematics Kloosterman identities over a quadratic extension By Herv re Jacquet Annals of Mathematics 160 2004 755 779 Kloosterman identities over a quadratic extension By Hervé Jacquet Contents 1. Introduction 2. Proof of Proposition 1 3. The Kloosterman transform 4. Key lemmas 5. Proof of Proposition 3 6. Complement Abstract We prove an identity of Kloosterman integrals which is the fundamental lemma of a relative trace formula for the general linear group in n variables. 1. Introduction One of the simplest examples of Langlands principle of functoriality is the quadratic base change. Namely let E F be a quadratic extension of global fields and z z the corresponding Galois conjugation. The base change associates to every automorphic representation n of GL n F an automorphic representation n of GL n E . If n 1 then n is an idele class character and n z n zz . An automorphic representation n of GL n E is a base change if and only if it is invariant under the Galois action. The existence of the base change is established by the twisted trace formula 3 . Formally if f and f are smooth functions of compact support on G EA and G FA respectively then one defines Kf x y 52 f x-1 Kf x y 52 f x i y The author was partially supported by NSF grant DMS-9619766. 756 HERVE JACQUET The identity of the twisted trace formula is that ịKf x x dx 1K . for many pairs of functions f f . The existence of such an identity depends on a simple relation between orbital integrals of the form y f xYx-i dx Ị f xY x 1 dx. In turn to establish such a relation one needs to compare at almost all places v of F inert in E the orbital integrals of specific functions. This is the fundamental lemma 9 . There is another possible characterization of the base change. Indeed in the case n 1 n is a base change if and only if it is trivial on the group of elements of norm 1 that is on the unitary group in one variable. Thus it is natural to conjecture that a representation n is a base change if .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.