TAILIEUCHUNG - Đề tài " The symplectic sum formula for GromovWitten invariants"

In the symplectic category there is a ‘connect sum’ operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum Z = X#Y in terms of the relative GW invariants of X and Y . Several applications to enumerative geometry are given. Gromov-Witten invariants are counts of holomorphic maps into symplectic manifolds. | Annals of Mathematics The symplectic sum formula for Gromov-Witten invariants By Eleny-Nicoleta Ionel and Thomas H. Parker Annals of Mathematics 159 2004 935 1025 The symplectic sum formula for Gromov-Witten invariants By ELENy-NicoLETA Ionel and Thomas H. Parker Abstract In the symplectic category there is a connect sum operation that glues symplectic manifolds by identifying neighborhoods of embedded codimension two submanifolds. This paper establishes a formula for the Gromov-Witten invariants of a symplectic sum Z X Y in terms of the relative GW invariants of X and Y. Several applications to enumerative geometry are given. Gromov-Witten invariants are counts of holomorphic maps into symplectic manifolds. To define them on a symplectic manifold X w one introduces an almost complex structure J compatible with the symplectic form w and forms the moduli space of J-holomorphic maps from complex curves into X and the compactified moduli space called the space of stable maps. One then imposes constraints on the stable maps requiring the domain to have a certain form and the image to pass through fixed homology cycles in X . When the correct number of constraints is imposed there are only finitely many maps satisfying the constraints the oriented count of these is the corresponding GW invariant. For complex algebraic manifolds these symplectic invariants can also be defined by algebraic geometry and in important cases the invariants are the same as the curve counts that are the subject of classical enumerative algebraic geometry. In the past decade the foundations for this theory were laid and the invariants were used to solve several long-outstanding problems. The focus now is on finding effective ways of computing the invariants. One useful technique is the method of splitting the domain in which one localizes the invariant to the set of maps whose domain curves have two irreducible components with the constraints distributed between them. This produces recursion .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.