TAILIEUCHUNG - Đề tài " Knot concordance, Whitney towers and L2-signatures "

We construct many examples of nonslice knots in 3-space that cannot be distinguished from slice knots by previously known invariants. Using Whitney towers in place of embedded disks, we define a geometric filtration of the 3-dimensional topological knot concordance group. The bottom part of the filtration exhibits all classical concordance invariants, including the CassonGordon invariants. As a first step, we construct an infinite sequence of new obstructions that vanish on slice knots. These take values in the L-theory of skew fields associated to certain universal groups. . | Annals of Mathematics Knot concordance Whitney towers and 2-signatures By Tim D. Cochran Kent E. Orr and Peter Teichner Annals of Mathematics 157 2003 433 519 Knot concordance Whitney towers and L2-signatures By Tim D. Cochran Kent E. Orr and Peter Teichner Abstract We construct many examples of nonslice knots in 3-space that cannot be distinguished from slice knots by previously known invariants. Using Whitney towers in place of embedded disks we define a geometric filtration of the 3-dimensional topological knot concordance group. The bottom part of the filtration exhibits all classical concordance invariants including the Casson-Gordon invariants. As a first step we construct an infinite sequence of new obstructions that vanish on slice knots. These take values in the L-theory of skew fields associated to certain universal groups. Finally we use the dimension theory of von Neumann algebras to define an L2-signature and use this to detect the first unknown step in our obstruction theory. Contents 1. Introduction . Some history -solvability and Whitney towers . Linking forms intersection forms and solvable representations of knot groups . L2-signatures . Paper outline and acknowledgements 2. Higher order Alexander modules and Blanchfield linking forms 3. Higher order linking forms and solvable representations of the knot group 4. Linking forms and Witt invariants as obstructions to solvability 5. L2-signatures 6. Non-slice knots with vanishing Casson-Gordon invariants 7. n -surfaces gropes and Whitney towers 8. H1 -bordisms 9. Casson-Gordon invariants and solvability of knots References All authors were supported by MSRI and NSF. The third author was also supported by a fellowship from the Miller foundation UC Berkeley. 434 TIM D. COCHRAN KENT E. ORR AND PETER TEICHNER 1. Introduction This paper begins a detailed investigation into the group of topological concordance classes of knotted circles in the 3-sphere. Recall that a knot K is topologically .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.