TAILIEUCHUNG - Stewart - Calculus - Early Transcendentals 6e HQ (Thomson, 2008) Episode 12

Tham khảo tài liệu 'stewart - calculus - early transcendentals 6e hq (thomson, 2008) episode 12', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 1074 CHAPTER 16 VECTOR CALCULUS FIGURE 10 Figure 9. If x y z is a point on 5 then 3 x x y f x cos 0 z f x sin 0 Therefore we take x and 0 as parameters and regard Equations 3 as parametric equations of 5. The parameter domain is given by a x b 0 2ir. EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve y sin x 0 x 2ir about the x-axis. Use these equations to graph the surface of revolution. SOLUTION From Equations 3 the parametric equations are x x y sin x cos 0 z sin x sin 0 and the parameter domain is 0 x 2tt 0 0 2tt. Using a computer to plot these equations and rotate the image we obtain the graph in Figure 10. We can adapt Equations 3 to represent a surface obtained through revolution about the y- or z-axis. See Exercise 30. TANGENT PLANES We now find the tangent plane to a parametric surface 5 traced out by a vector function r u v x u v i y u v j z u v k at a point Po with position vector r uo vo . If we keep u constant by putting u Uo then r uo v becomes a vector function of the single parameter v and defines a grid curve C1 lying on 5. See Figure 11. The tangent vector to C1 at Po is obtained by taking the partial derivative of r with respect to v bx dy dz 4 rv Uo vo i - v Uo vo j u vo k Similarly if we keep v constant by putting v vo r u vo that lies on 5 and its tangent vector at Pq is we get a grid curve C2 given by dx . dy 2 dz ru du uo vo i aU Uo vo j ău Uo vq k 5 SECTION PARAMETRIC SURFACES AND THEIR AREAS 1075 If rM X rv is not 0 then the surface S is called smooth it has no corners . For a smooth surface the tangent plane is the plane that contains the tangent vectors rM and rv and the vector rM X rv is a normal vector to the tangent plane. V EXAMPLE 9 Find the tangent plane to the surface with parametric equations x u2 y v2 z u 2v at the point 1 1 3 . Figure 12 shows the self-intersecting surface in Example 9 and its tangent plane at 1 1 3 . 1 1 3 SOLUTION We first compute the tangent vectors dx . r 7- i du dx. rv

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.