TAILIEUCHUNG - Đề tài " The causal structure of microlocalized rough Einstein metrics "

This is the second in a series of three papers in which we initiate the study of very rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. By very rough we mean solutions which cannot be constructed by the classical techniques of energy estimates and Sobolev inequalities. In this paper we develop the geometric analysis of the Eikonal equation for microlocalized rough Einstein metrics. This is a crucial step in the derivation of the decay estimates needed in the first paper. . | Annals of Mathematics The causal structure of microlocalized rough Einstein metrics By Sergiu Klainerman and Igor Rodnianski Annals of Mathematics 161 2005 1195 1243 The causal structure of microlocalized rough Einstein metrics By Sergiu Klainerman and Igor Rodnianski Abstract This is the second in a series of three papers in which we initiate the study of very rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. By very rough we mean solutions which cannot be constructed by the classical techniques of energy estimates and Sobolev inequalities. In this paper we develop the geometric analysis of the Eikonal equation for microlocalized rough Einstein metrics. This is a crucial step in the derivation of the decay estimates needed in the first paper. 1. Introduction This is the second in a series of three papers in which we initiate the study of very rough solutions of the Einstein vacuum equations. By very rough we mean solutions which cannot be dealt with by the classical techniques of energy estimates and Sobolev inequalities. In fact in this work we develop and take advantage of Strichartz-type estimates. The result stated in our first paper Kl-Ro1 is in fact optimal with respect to the full potential of such We recall below our main result Theorem Main Theorem . Let g be a classical solution2 of the Einstein equations 1 Rag g 0 expressed3 relative to wave coordinates xa 2 Dg xa A. d v g ỡv xa 0. g 1To go beyond our result will require the development of bilinear techniques for the Einstein equations see the discussion in the introduction to Kl-Ro1 . 2We denote by Rap the Ricci curvature of g. 3In wave coordinates the Einstein equations take the reduced form g JdadpgỊIv NỊtv g ỡg with N quadratic in the first derivatives dg of the metric. 1196 SERGIU KLAINERMAN AND IGOR RODNIANSKI Assume that on the initial spacelike hyperplane s given by t x0 0 V g. 0 e Hs-1 T dtgag 0 e Hs-1 T with V

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.