TAILIEUCHUNG - Đề tài " Invertibility of random matrices: norm of the inverse "

Let A be an n × n matrix, whose entries are independent copies of a centered random variable satisfying the subgaussian tail estimate. We prove that the operator norm of A−1 does not exceed Cn3/2 with probability close to 1. 1. Introduction Let A be an n × n matrix, whose entries are independent, identically distributed random variables. The spectral properties of such matrices, in particular invertibility, have been extensively studied (see, . [M] and the survey [DS]). While A is almost surely invertible whenever its entries are absolutely continuous, the case of discrete entries is highly nontrivial. . | Annals of Mathematics Invertibility of random matrices norm of the inverse By Mark Rudelson Annals of Mathematics 168 2008 575 600 Invertibility of random matrices norm of the inverse By Mark Rudelson Abstract Let A be an n X n matrix whose entries are independent copies of a centered random variable satisfying the subgaussian tail estimate. We prove that the operator norm of A-1 does not exceed Cn3 2 with probability close to 1. 1. Introduction Let A be an n X n matrix whose entries are independent identically distributed random variables. The spectral properties of such matrices in particular invertibility have been extensively studied see . M and the survey DS . While A is almost surely invertible whenever its entries are absolutely continuous the case of discrete entries is highly nontrivial. Even in the case when the entries of A are independent random variables taking values 1 with probability 1 2 the precise order of probability that A is singular is unknown. Komlos K1 K2 proved that this probability is o 1 as n 1. This result was improved by Kahn Komlós and Szemeredi KKS who showed that this probability is bounded above by 0n for some absolute constant 0 1. The value of 0 has been recently improved in a series of papers by Tao and Vu TV1 TV2 to 0 3 4 o 1 the conjectured value is 0 1 2 o 1 . However these papers do not address the quantitative characterization of invertibility namely the norm of the inverse matrix considered as an operator from R to R . Random matrices are one of the standard tools in geometric functional analysis. They are used in particular to estimate the Banach-Mazur distance between finite-dimensional Banach spaces and to construct sections of convex bodies possessing certain properties. In all these questions condition number or the distortion IIAk A-1 I plays the crucial role. Since the norm of A is usually highly concentrated the distortion is determined by the norm of A-1. The estimate of the norm of A-1 is known only in the case

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.