TAILIEUCHUNG - Báo cáo khoa học:Tight estimates for eigenvalues of regular graphs

It is shown that if a d-regular graph contains s vertices so that the distance between any pair is at least 4k, then its adjacency matrix has at least s eigenvalues which are at least 2pd − 1 cos( 2k ). A similar result has been proved by Friedman using more sophisticated generally, Serre has shown (see [3], [4] ) that for any fixed r and for any infinite family of d-regular graphs Gi, lim inf r(Gi) 2pd − 1. The same result has been proved by Friedman already in [5]. | Tight estimates for eigenvalues of regular graphs A. Nilli Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 69978 Israel nilli@ Submitted Apr 4 2004 Accepted May 3 2004 Published May 24 2004 MR Subject Classification 05C50 Abstract It is shown that if a d-regular graph contains s vertices so that the distance between any pair is at least 4k then its adjacency matrix has at least s eigenvalues which are at least 2ựd 1 cos n . A similar result has been proved by Friedman using more sophisticated tools. 1 The main result Let G V E be a simple d-regular graph on n vertices. let A be its adjacency matrix and let A1 G d A2 G . An G be its eigenvalues. Alon and Boppana 1 see also 9 11 proved that for any fixed d and for any infinite family of of d-regular graphs Gi liminf A2 Gi 2 ựd 1. This bound is sharp at least when d 1 is a prime congruent to 1 modulo 4 as shown by the construction of Lubotzky Phillips and Sarnak 9 obtained independently by Margulis 10 . In fact in 1 it is conjectured that almost all d-regular graphs G on n vertices satisfy A2 G 2ỵ d 1 o 1 as n tends to infinity . This has recently been proved by Friedman 6 . More generally Serre has shown see 3 4 that for any fixed r and for any infinite family of d-regular graphs Gi liminf Ar Gi 2 ựd 1. The same result has been proved by Friedman already in 5 . In this note we give an elementary simple proof of this result following the method of 11 . Our estimate is a bit better than that of 11 even for the case r 2 also studied by Kahale in 7 and matches in the first two terms the estimate of Friedman in 5 but the proof is completely elementary. Theorem 1 Let G be a d-regular graph containing s vertices so that the distance between any pair of them is at least 4k. Then As G 2 ựd 1 cos n . THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2004 N9 1 2 The proof Let G V E be a d-regular graph where d 3. Let v E V be a vertex define Vo v and let V be the set of all vertices of

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.