TAILIEUCHUNG - Kỹ thuật nén Video số

Nói chung, tín hiệu video thường chứa đựng một lượng lớn các thông tin thừa, chúng thường được chia thành hai loại: thừa tĩnh bên trong từng frame (statistical) và thừa động giữa các frame (subjective). | Giới thiệu nhóm và môn học Kỹ thuật nén Video số + Giới thiệu chung +Mô hình nén ảnh +Các tham số hình ảnh +Lý thuyết thông tin – Entropy +Các phương pháp nén +Mã RLC +Mã Shannon – Fano +Mã Huffman +Nén trong ảnh +Nén liên kết ảnh +Chuẩn JPEG +Chuẩn MPEG +Chuẩn MPEG - 2 Vài nét về kỹ thuật nén video dùng MPEG Nói chung, tín hiệu video thường chứa đựng một lượng lớn các thông tin thừa, chúng thường được chia thành hai loại: thừa tĩnh bên trong từng frame (statistical) và thừa động giữa các frame (subjective). Mục đích của nén video là nhằm làm giảm số bit khi lưu trữ và khi truyền bằng cách phát hiện để loại bỏ các lượng thông tin dư thừa này và dùng các kỹ thuật Entropy mã hoá để tối thiểu hoá lượng tin quan trọng cần giữ lại. GIỚI THIỆU Kỹ thuật nén ảnh số đang đóng một vai trò cực kỳ quan trọng trong các hệ thống viễn thông và multimedia để giải quyết vấn đề băng thông của đường truyền. Các kỹ thuật nén video đều cố gắng làm giảm lượng thông tin cần thiết cho một chuỗi các bức ảnh mà không làm giảm chất lượng của nó đối với người xem. Nói chung, tín hiệu video thường chứa đựng một lượng lớn các thông tin thừa, chúng thường được chia thành hai loại: thừa tĩnh bên trong từng frame (statistical) và thừa động giữa các frame (subjective). Mục đích của nén video là nhằm làm giảm số bit khi lưu trữ và khi truyền bằng cách phát hiện để loại bỏ các lượng thông tin dư thừa này và dùng các kỹ thuật Entropy mã hoá để tối thiểu hoá lượng tin quan trọng cần giữ lại. Nén không mất dữ liệu Đối với dạng nén không mất dữ liệu, ảnh được khôi phục hoàn toàn giống ảnh gốc, tuy nhiên điều này đòi hỏi phải có thiết bị lưu trữ và đường truyền lớn hơn. Các thuật toán của nén không mất dữ liệu thường dựa vào việc thay thế một nhóm các ký tự trùng lặp bởi một nhóm các ký tự đặc biệt khác ngắn hơn mà không quan tâm tới ý nghĩa của dòng bit dữ liệu. Các ví dụ của dạng nén không mất dữ liệu là Run-Length Encoding (RLE), Huffman Coding, Arithmetic coding, Shannon-Fano Coding, LZ78, LZH, .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.