TAILIEUCHUNG - Báo cáo toán học: ""Localized" self-adjointness of Schrödinger operators "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: "Địa phương hóa" tự adjointness của các nhà khai thác Schrödinger. | J. OPERATOR THEORY 1 1979 287-290 Copyright by INCREST 1979 LOCALIZED SELF-ADJOINTNESS OF SCHRODINGER OPERATORS H. BREZIS Let ei oc Rm be a real valued function. Assume A A q with Rm CS Rm satisfies 1 A Q . j I v p 2dx j ạ ợ 2dx 0 V p e Rm . Suppose in addition that for every x0 e R there exist q e áL Rm with q 1 near Ao 5 0 and c such that 2 A qq 5 A q q c 3 A qq is essentially self-adjoint on S R in L2 R . Our main result is the following Theorem 1. A is essentially self-adjoint in L2 R . Remark. Assumptions 2 and 3 hold for example if q- e Lfoc Rm where ĨĨĨ _ p 2 when m 3 p 2 when m 4 p - when m 5 see T. Kato 5 and 2 also M. Reed and B. Simon 6 Theorem . In this case the conclusion of Theorem 1 was obtained by Chernoff 2 Theorem under slightly more general assumptions using a completely different approach . Related results can be found in 3 4 7 8 9 . In the proof of Theorem 1 we shall use the following Lemma 1. Assume 1 . Let V E HfR be such that 7 r 2 6 Then 7 t 2 6 L lR and I Vf 2dx q y 2dx 0. 288 H. BREZIS Proof. The conclusion holds obviously if V e 1 Rm n ROT has compact support use smoothing by convolution . In the general case truncate f and multiply by cut-off functions. Lemma 2. Let Q 6 L oz Rm be a real valued function. Assume 4 A -r Q is essentially self-adjoint on Rm in 2 Rm 5 A Q Ỗ A Q -C for some Ỗ 0 and some c. Let V e L2 R be such that Av Qv e Then vsH Rm and 2 v 2 6 L Rm . Proof. Let B A Q c with D B SfRm . By 4 and 5 B is essentially self-adjoint and B 0. Consequently Nự 5 0 . Let w v 6 Q M2 e L fR with the Hilbert norm IHI2 ị I v K pdx r j Q w 2dx j H2dx. We deduce from Lemma 1 and 5 that if w 6 w then Q wI2 e L R and j Iv dx 2 v 2dx 5 vM2 Ỗ j Ổ W2 - c ị W2. Consequently if T is given in 7 -1 R there exists a unique weW such that 6 ị dx j Qwỹ dx ị C 1 wý dx T ý V ìỊj e w by Lax-Milgram . If ÍÍ e L2 R is such that Av Qv 6 we may choose in 6 T Av Qv C l p. It follows that V w e N I B and thus v w in particular V w. Proof of .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.