TAILIEUCHUNG - How can we speak math?

It is likely that most people can communicate mathematics to a computer more e ectively (rapidly and accurately) by speaking than they can by using a stylus on a computer tablet. This may seem surprising, but is our speculation based on trying various alternative input methods. An even better setup may be to speak and simultaneously use pointing or handwriting. Unfortunately, building a properly functioning prototype using this concept is di cult | How can we speak math? Richard Fateman Computer Science Division, EECS Department University of California at Berkeley February 16, 2009 Abstract It is likely that most people can communicate mathematics to a computer more effectively (rapidly and accurately) by speaking than they can by using a stylus on a computer tablet. This may seem surprising, but is our speculation based on trying various alternative input methods. An even better setup may be to speak and simultaneously use pointing or handwriting. Unfortunately, building a properly functioning prototype using this concept is difficult. Yet a successful implementation of such a “multimodal” combination should allow the computer to reinforce correct recognition while identifying and perhaps repairing “unimodal” errors. In some cases speaking may be more convenient than typing, even for rapid typists: many mathematical symbols are missing from the keyboard but can be easily spoken and recognized. Even without venturing into Greek, or alternative fonts, just handwriting or even typing a number, say “fifty million” may be slower and more error-prone than speaking. Pursuing the goal of effectively speaking and recognizing small pieces of mathematics, oed to a study of how hard it would be to speak arbitrarily long sections of mathematics, including nested complex expressions. We first describe programs for the inverse problem: computer generation of mathematical speech. This requires that we address some speaking conventions to overcome the unfortunately ambiguous and inconsistent common usages of mathematics. Then we consider tools and guidelines to make it more plausible for humans to speak full mathematical formulas unambiguously so they can be recognized by a computer using a speech recognizer program. We describe our prototype programs which do somewhat less than we propose, but are effective in that speech can either be used alone, or used to fill in boxes (superscripts, etc.) or larger pieces. Speech can also be .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.