TAILIEUCHUNG - IE675 Game Theory - Lecture Note Set 2

TWO-PERSON GAMES Two-Person Zero-Sum Games Basic ideas Definition . A game (in extensive form) is said to be zero-sum if and only if, at each terminal vertex, the payoff vector (p1 , . . . , pn ) satisfies n pi = 0. i=1 Two-person zero sum games in normal form. Here’s an example. . . −1 −3 −3 −2 1 −2 −1 A= 0 2 −2 0 1 | IE675 Game Theory Lecture Note Set 2 Wayne F. Bialas1 Wednesday January 19 2005 2 TWO-PERSON GAMES Two-Person Zero-Sum Games Basic ideas Definition . A game in extensive form is said to be zero-sum if and only if at each terminal vertex the payoff vector p1 . pn satisfies Y 1 Pi 0- Two-person zero sum games in normal form. Here s an example. 1 3 3 2 A 0 1 2 1 2 2 0 1 The rows represent the strategies of Player 1. The columns represent the strategies of Player 2. The entries aij represent the payoff vector aij aij . That is if Player 1 chooses row i and Player 2 chooses column j then Player 1 wins aij and Player 2 loses aj. If aij 0 then Player 1 pays Player 2 aij . Note . We are using the term strategy rather than action to describe the player s options. The reasons for this will become evident in the next chapter when we use this formulation to analyze games in extensive form. Note . Some authors in particular those in the field of control theory prefer to represent the outcome of a game in terms of losses rather than profits. During the semester we will use both conventions. 1 Department of Industrial Engineering University at Buffalo 301 Bell Hall Buffalo NY 142602050 USA E-mail bialas@ Web http bialas. Copyright @ MMV Wayne F. Bialas. All Rights Reserved. Duplication of this work is prohibited without written permission. This document produced January 19 2005 at 3 33 pm. 2-1 How should each player behave Player 1 for example might want to place a bound on his profits. Player 1 could ask For each of my possible strategies what is the least desirable thing that Player 2 could do to minimize my profits For each of Player 1 s strategies i compute a min a j j and then choose that i which produces max a . Suppose this maximum is achieved for i i . In other words Player 1 is guaranteed to get at least V A min a j min a j i 1 . m The value V A is called the gain-floor for the game A. In this case V A 2 with i 2 2 3 . .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.