TAILIEUCHUNG - Giáo án hình học lớp 10 - tiết 40 đường hypebol

Nhớ được định nghĩa đường hypebol và các yếu tố xác định đường đó như: tiêu cự, tiêu điểm, tâm sai, . | HỆ THỨC LƯỢNG TRONG TAM GIÁC * Định lí hàm số côsin: * Định lý hàm số sin: * Định lý đường trung tuyến: * Công thức tính diện tích: Bài tập: Bài 1: Cho tam giác ABC. Tính đường cao vẽ từ A và bán kính đường tròn ngoại tiếp tam giác ABC. Biết: a) CA = 8, AB = 5 ; b) BC = 21 ; CA = 17 ; AB = 8 Bài 2: Tính các cạnh và diện tích tam giác ABC biết: Bài 3: Cho tam giác ABC có a = 5; b = 6; c = 7. Tính diện tích S, các đường cao và các bán kính đường tròn ngoại tiếp, nội tiếp tam giác. Bài 4: Cho tam giác ABC có 2 trung tuyến BM = 6; CN = 9 hợp với nhau một góc 1200 . Tính các cạnh của tam giác. Bài 5: Cho tam giác ABC có a = 5; b = 5; c = 3. Trên đọan AB, BC lấy lần lượt các điểm M, K sao cho BM = 2, BK = 3. Tính MK Bài 6: Cho tam giác ABC với c = 2, b = 3, a = 4, M là trung điểm của AB. Tính bán kính đường tròn ngoại tiếp tam giác BCM. Bài 7: Cho tam giác ABC có c = 3; b = 4 và S = . Tính a. Bài 8: Cho tam giác ABC có góc B = 600, R = 2, I là tâm đường tròn nội tiếp. Tính bán kính R của đường tròn ngoại tiếp tam giác ACI. Bài 9: Cho tứ giác lồi ABCD. Gọi I, J lần lượt là trung điểm của AC và BD. a) Chứng minh: AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4IJ2 b) Suy ra điều kiện cần và đủ để một tứ giác là một hình bình hành. Bài 10: Trong tam giác ABC. Chứng minh: a) S = 2R2sinAsinBsinC b) S = Rr(sinA + sinB + sinC) Bài 11: Cho tam giác ABC thỏa: a = 2bccosC. Chứng minh tam giác ABC cân. Bài 12: Trong tam giác ABC, chứng minh rằng: Bài 13: Cho tam giác ABC có trung tuyến , độ dài cạnh BC = 6 và góc B= 600. Tính độ dài cạnh c và các bán kính đường tròn nội, ngoại tiếp tam giác đó. Bài 14: Cho tam giác ABC với các trung tuyến BB’ và CC’ vuông góc với nhau tại trọng tâm G của tam giác đó. Chứng minh rằng: a) b) c) b2 + c2 = 5a2 Giáo viên: Trần Văn Hùng – Môn Toán - THPT Nguyễn Bỉnh Khiêm

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.