TAILIEUCHUNG - Single concatenated input is better than indenpendent multiple input for CNNs to Predict chemical-induced disease relation from literature

This paper demonstrates that for a CNN it is vice-versa, in which concatenation is better for CDR classification. To this end, we develop a CNN based model with multiple input concatenated for CDR classification. Experimental results on the benchmark dataset demonstrate its outperformance over other recent state-of-the-art CDR classification models. | VNU Journal of Science Comp. Science amp Com. Eng Vol. 36 No. 1 2020 11-16 Original Article Single Concatenated Input is Better than Indenpendent Multiple-input for CNNs to Predict Chemical-induced Disease Relation from Literature Pham Thi Quynh Trang Bui Manh Thang Dang Thanh Hai Bingo Biomedical Informatics Lab Faculty of Information Technology VNU University of Engineering and Technology Vietnam National University Hanoi 144 Xuan Thuy Cau Giay Hanoi Vietnam Received 21 October 2019 Revised 17 March 2020 Accepted 23 March 2020 Abstract Chemical compounds drugs and diseases are among top searched keywords on the PubMed database of biomedical literature by biomedical researchers all over the world according to a study in 2009 . Working with PubMed is essential for researchers to get insights into drugs side effects chemical-induced disease relations CDR which is essential for drug safety and toxicity. It is however a catastrophic burden for them as PubMed is a huge database of unstructured texts growing steadily very fast 28 millions scientific articles currently approximately two deposited per minute . As a result biomedical text mining has been empirically demonstrated its great implications in biomedical research communities. Biomedical text has its own distinct challenging properties attracting much attetion from natural language processing communities. A large-scale study recently in 2018 showed that incorporating information into indenpendent multiple-input layers outperforms concatenating them into a single input layer for biLSTM producing better performance when compared to state-of-the-art CDR classifying models. This paper demonstrates that for a CNN it is vice-versa in which concatenation is better for CDR classification. To this end we develop a CNN based model with multiple input concatenated for CDR classification. Experimental results on the benchmark dataset demonstrate its outperformance over other recent state-of-the-art CDR classification .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.