TAILIEUCHUNG - About the edge - based smoothed finite element method for the reissner - mindlin plate - bending problem

The paper further develops the edge-based smoothed finite element method (ES-FEM) for analysis of Reissner - Mindlin plates using triangular meshes. The bending and shearing stiffness matrices are obtained using strain smoothing technique over the smoothing domains associated with edges of elements. | Vietnam Journal of Mechanics, VAST, Vol. 31, No. 2 (2009) , pp. 75-86 ABOUT THE EDGE-BASED SMOOTHED FINITE ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE-BENDING PROBLEM Nguyen Xuan Hung 1 '2 , Nguyen Thoi. Trung 1 '3 1 Department of Mechanics, Faculty of Mathematics and Computer Science, University of Science- VNU-HCM, Vietnam 2 Singapore-MIT Alliance (SMA), E4-04 -10, 4 Engineering Drive 3, Singapore 3 Center for Advanced Computations in Engineering Science (ACES), Department of Mechanical Engineering, NatiOnal University of Singapore, 9 Engineering Drive 1, Singapore Abstract. The paper further develops the edge-based smoothed finite element method (ES-FEM) for analysis of Reissner - Mindlin plates using triangular meshes . The bending and shearing stiffness matrices are obtained using strain smoothing technique over the smoothing domains associated with edges of elements. Transverse shear locking can be avoided with help of the discrete shear gap (DSG) method. The numerical examples show that the present ES-FEM-DSG method obtains y accurate results compared to the exact solution and other existing elements. 1. INTRODUCTION In the practical applications, lower-order plate finite elements are the most preferred due to its simplicity and efficiency. However, using the Reissner-Mindlin plate theory, these elements often suffer from one intrinsic difficulty: shear locking phenomenon in the limitation of thin plates. In order to eliminate shear locking, early methods tried to avoid shear locking by using reduced integration or a selective reduced integration [1]. For example, based on a four node quadrilateral element, a single Gauss point is utilized to compute shear strain energy while a 2x2 Gauss point scheme is used for the bending energy. Unfortunately, reduced integration often causes the instability due to rank deficiency of and results in zero-energy modes [1]. Various improvements of formulations as well as numerical techniques have been developed .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.