TAILIEUCHUNG - Uniqueness theorems for holomorphic curves on annulus sharing hyperplanes

In this paper, by using the second main theorem for holomorphic curves from annuli ∆ to P n(C) intersecting a collection of fixed hyperplanes in general position with truncated counting functions, we will prove some theorems on unicity for linearly non-degenerate holomorphic curves on annulus ignoring multiplicity with hyperplanes in general position in projective space. This theorems have shown the sufficient conditions for two linearly non-degenerate holomorphic curves being equivalent. | UNIQUENESS THEOREMS FOR HOLOMORPHIC CURVES ON ANNULUS SHARING HYPERPLANES Nguyen Viet Phuong Thai Nguyen University of Economics and Business Administration - Thai Nguyen University ABSTRACT In this paper, by using the second main theorem for holomorphic curves from annuli ∆ to Pn (C) inter- secting a collection of fixed hyperplanes in general position with truncated counting functions, we will prove some theorems on unicity for linearly non-degenerate holomorphic curves on annulus ignoring multiplicity with hyperplanes in general position in projective space. This theorems have shown the sufficient conditions for two linearly non-degenerate holomorphic curves being equivalent. Keywords: 1 Unicity, annuli, hyperplane, holomorphic curve, general position. INTRODUCTION In 1926, R. Nevanlinna proved that two nonconstant meromorphic functions of one complex variable which attain same five distinct values at the same points, must be identical. In 1975, (see [2]) generalized Nevanlinna’s result to the case of meromorphic mappings of Cm into Pn (C). He given the sufficient condition with 3n + 2 hyperplanes in general position which determining a meromorphic maps. Since that time, this problem has been studied intensively. The many mathematicians study two following problems: finding properties of unique range sets, and finding out a unique range set with the smallest number of elements as possible. For example: Fujimoto ([2],[3]), Smiley ([8]), Ru ([9]), Dethloft-Tan ([1]), Phuong ([6],[7]) and many auther. In this paper by using the second main theorem with ramification of Phuong-Thin (see [5]) we give some uniqueness results for linearly non-degenerate holomorphic curves on annulus sharing sufficiently many hyperplanes in projective space. First, we introduce some notations. Let R0 > 1 be a fixed positive real number or +∞, set 1 n, in Pn (C) are said to be in general position if for any distinct i1 , . . . , in+1 ∈ {1, . . . , .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.