TAILIEUCHUNG - Efficiency and duality in nonsmooth multiobjective fractional programming involving η - pseudolinear functions

In this paper, we shall establish necessary and sufficient conditions for a feasible solution to be efficient for a nonsmooth multiobjective fractional programming problem involving η − pseudolinear functions. Furthermore, we shall show equivalence between efficiency and proper efficiency under certain boundedness condition. | Yugoslav Journal of Operations Research 22 (2012), Number 1, 3-18 DOI: EFFICIENCY AND DUALITY IN NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROGRAMMING INVOLVING η -PSEUDOLINEAR FUNCTIONS S. K. MISHRA, Department of Mathematics Faculty of Science Banaras Hindu University, Varanasi-221005, India B. B. UPADHYAY1 Department of Mathematics Faculty of Science Banaras Hindu University, Varanasi- 221005, India Received: December 2010 / Accepted: December 2011 Abstract: In this paper, we shall establish necessary and sufficient conditions for a feasible solution to be efficient for a nonsmooth multiobjective fractional programming problem involving η − pseudolinear functions. Furthermore, we shall show equivalence between efficiency and proper efficiency under certain boundedness condition. We have also obtained weak and strong duality results for corresponding Mond-Weir subgradient type dual problem. These results extend some earlier results on efficiency and duality to multiobjective fractional programming problems involving pseudolinear and η − pseudolinear functions. Keywords: Multiobjective fractional programming, nonsmooth programming, pseudolinearity, η − pseudolinearity, duality. MSC: 90C32; 49J52; 52A01. 1 This author is supported by the Council of Scientific and Industrial Research, New Delhi, India, through grant no. 09/013(0357)/2011-EMR-I. 4 . Mishra, . Upadhyay / Efficiency And Duality In Nonsmooth 1. INTRODUCTION In the optimization theory, convexity and its different generalizations play an important role. Mangasarian [16] introduced the concept of pseudoconvex functions as a generalization of the convex functions. Chew and Choo [5] introduced a new class of functions both pseudoconvex and pseudoconcave known as pseudolinear functions. Chew and Choo [5] obtained first and second order characterizations for pseudolinear functions. Komlosi [11] and Rapcsak [22] studied and characterized higher .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.