TAILIEUCHUNG - Efficiency and duality for multiobjective fractional variational problems with (ρ,b) quasiiconvexity

The necessary conditions for (normal) efficient solutions to a class of multiobjective fractional variational problems (MFP) with nonlinear equality and inequality constraints are established using a parametric approach to relate efficient solutions of a fractional problem and a non-fractional problem. | Yugoslav Journal of Operations Research Vol 19 (2009), Number 1, 85-99 DOI: EFFICIENCY AND DUALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL PROBLEMS WITH ( ρ , b) QUASIINVEXITY Ştefan MITITELU Technical University of Civil Engineering, Bucharest, Romania st_mititelu@ I. M. STANCU-MINASIAN ”Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics, Bucharest, Romania stancu_minasian@ Received: December 2007 / Accepted: June 2009 Abstract. The necessary conditions for (normal) efficient solutions to a class of multiobjective fractional variational problems (MFP) with nonlinear equality and inequality constraints are established using a parametric approach to relate efficient solutions of a fractional problem and a non-fractional problem. Based on these normal efficiency criteria a Mond-Weir type dual is formulated and appropriate duality theorems are proved assuming ( ρ , b) - quasi-invexity of the functions involved. Keywords: Duality, fractional variational problem,quasi-invexity. 1. INTRODUCTION For the first results on the necessity of the optimal solutions of the variational problems we cite the Valentine’s paper[17]. The papers of Mond and Hanson [9, 10], Bector [1], Mond, Chandra and Husain [12], Mond and Husain [11], Smart and Mond [16] and Preda [14] developed the duality of the scalar variational problems involving convex and generalized convex functions. Mukherjee and Purnachandra [13], Preda and Gramatovici [15] and Mititelu [7] established weak efficiency conditions and developed 86 Ş. Mititelu, . Stancu-Minasian / Eficiency And Duality different types of dualities for multiobjective variational problems generated by various types of generalized convex functions. Kim and Kim [4] used the efficiency property of the multi-objective variational problems in the duality theory. In this paper we will introduce the notion of normal efficient solution and establish the necessary .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.