TAILIEUCHUNG - Bài giảng Giải tích hàm nhiều biến: Chương 2 - Trường ĐH Bách Khoa TP. Hồ Chí Minh

Bài giảng "Giải tích hàm nhiều biến - Chương 2: Đạo hàm riêng và vi phân" cung cấp cho người học các kiến thức: Đạo hàm riêng và vi phân của f = f(x,y); đạo hàm riêng và vi phân của hàm hợp; đạo hàm riêng và vi phân của hàm ẩn; đạo hàm theo hướng; công thức Taylor, Maclaurint; ứng dụng của đạo hàm riêng. nội dung chi tiết. | Trường Đại học Bách khoa tp. Hồ Chí Minh Bộ môn Toán Ứng dụng ------------------------------------------------------------------------------------- Giải tích hàm nhiều biến Chương 2: Đạo hàm riêng và vi phân • Giảng viên Ts. Đặng Văn Vinh (2/2008) dangvvinh@ Nội dung --------------------------------------------------------------------------------------------------------------------------- – Đạo hàm riêng và vi phân của f = f(x,y) – Đạo hàm riêng và vi phân của hàm hợp – Đạo hàm riêng và vi phân của hàm ẩn – Đạo hàm theo hướng – Công thức Taylor, Maclaurint – Ứng dụng của đạo hàm riêng I. Đạo hàm riêng và vi phân của f = f(x,y) --------------------------------------------------------------------------------------------------------------------------- Định nghĩa đạo hàm riêng theo x. Cho hàm hai biến f = f(x,y) với điểm M 0 ( x0 , y0 ) cố định. Xét hàm một biến F(x) = f(x,y0) theo biến x. Đạo hàm của hàm một biến F(x) tại x0 được gọi là đạo hàm riêng theo x của f(x,y) tại M 0 ( x0 , y0 ), ký hiệu f ( x0 , y0 ) F ( x0 x) F ( x0 ) ' f x ( x0 , y0 ) lim x 0 x x f ( x0 , y0 ) f ( x0 , y0 ) lim x 0 x I. Đạo hàm riêng và vi phân của f = f(x,y) --------------------------------------------------------------------------------------------------------------------------- Định nghĩa đạo hàm riêng theo y. Cho hàm hai biến f = f(x,y) với điểm M 0 ( x0 , y0 ) cố định. Xét hàm một biến F(y) = f(x0,y) theo biến y. Đạo hàm của hàm một biến F(y) tại y0 được gọi là đạo hàm riêng theo y của f(x,y) tại M 0 ( x0 , y0 ) , ký hiệu f ( x0 , y0 ) F ( y0 y ) F ( y0 ) ' f y ( x0 , y0 ) lim y 0 y y f ( x0 , y0 y ) f ( x0 , y0 ) lim y 0 y I. Đạo hàm riêng và vi phân của f = f(x,y) --------------------------------------------------------------------------------------------------------------------------- Ghi nhớ. Đạo hàm riêng của f = f(x,y) tại M 0 ( x0 , y0 ) theo x là đạo hàm của hàm một biến f = .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.