TAILIEUCHUNG - Ebook Chiral separation techniques: Part 2
(BQ) Part 2 book "Chiral separation techniques" has contents: Membranes in ; enantiomer separations using designed imprinted chiral phases, enantiomer separations using designed imprinted chiral phases, nonchromatographic solid phase purification of enatiomers,.and other contents. | Chiral Separation Techniques: A Practical Approach, Second, completely revised and updated edition Edited by G. Subramanian Copyright © 2001 Wiley-VCH Verlag GmbH ISBNs: 3-527-29875-4 (Hardcover); 3-527-60036-1 (Electronic) 5 Membranes in Chiral Separations Maartje F. Kemmere and Jos T. F. Keurentjes Introduction At present moment, no generally feasible method exists for the large-scale production of optically pure products. Although for the separation of virtually every racemic mixture an analytical method is available (gas chromatography, liquid chromatography or capillary electrophoresis), this is not the case for the separation of racemic mixtures on an industrial scale. The most widely applied method for the separation of racemic mixtures is diastereomeric salt crystallization [1]. However, this usually requires many steps, making the process complicated and inducing considerable losses of valuable product. In order to avoid the problems associated with diastereomeric salt crystallization, membrane-based processes may be considered as a viable alternative. During the past decades, the range of conventional separation techniques has been extended by a wide range of membrane separation processes. The first applications of membranes are found in biomedical applications such as hemodialysis and plasmaphoresis [2]. The first industrial membrane application has been the desalination of water streams, mainly for potable water production [3]. A significant effort in membrane materials development has led to many industrial applications of a variety of processes, including gas separations, pervaporation, pertraction, electrodialysis and various filtration processes (reverse osmosis, RO; nano filtration, NF; ultrafiltration, UF; micro filtration, MF) [4]. Membrane separations often provide opportunities as a cost-efficient alternative to separations that are troublesome or even impossible, using classical methods. Additionally, since most membrane processes are .
đang nạp các trang xem trước