TAILIEUCHUNG - Nghiệm mạnh của phương trình vi tích phân với đối số lệch

Trong bài báo này, các tác giả nghiên cứu sự tồn tại nghiệm mạnh của một dạng phương trình vi tích phân với đối số lệch. Công cụ sử dụng là định lý điểm bất động của toán tử U+C , trong đó U là toán tử Hoa-Schmitt co và C là toán tử compact. | Created by Simpo PDF Creator Pro (unregistered version) Số 24 năm 2010 Tạp chí KHOA HỌC ĐHSP TP HCM _ NGHIỆM MẠNH CỦA PHƯƠNG TRÌNH VI TÍCH PHÂN VỚI ĐỐI SỐ LỆCH LÊ HOÀN HÓA *, NGUYỄN NGỌC TRỌNG **, LÊ THỊ KIM ANH*** TÓM TẮT Trong bài báo này, chúng tôi nghiên cứu sự tồn tại nghiệm mạnh của một dạng phương trình vi tích phân với đối số lệch. Công cụ sử dụng là định lý điểm bất động của toán tử U + C , trong đó U là toán tử Hoa-Schmitt co và C là toán tử compact. ABSTRACT The strong solution of the retarded integro-differential equation In this paper, we study the existence of a strong solution of one form of retarded integro-differential equation by using The fixed point Theorem of the operator U + C , whereas U is a Hoa-Schmitt operator and C is a compact operator. 1. Các kết quả được sử dụng Cho X là không gian lồi địa phương và P là một họ nửa chuẩn tách trên X , D là một tập con của X và U : D ® X . Với bất kỳ a Î X , ta định nghĩa U a : D ® X bởi U a ( x ) = U ( x ) + a. Toán tử U : D ® X được gọi là Hoa-Schmitt co trên tập con W của X nếu 1) Với bất kỳ a Î W : U a ( D ) Ì D. 2) Với bất kỳ a Î W và p Î P , tồn tại ka Î với tính chất "e > 0, $r Î r r $d > 0 sao cho "x, y Î D thỏa a ap ( x, y ) 0. Ta ký hiệu là chuẩn của không gian Banach E . { } Cr = C ( [ - r ,0] , E ) với chuẩn x = sup x ( t ) : t Î [ - r ,0] . X0 = C ( chuẩn { } n n + , E ) là không gian Frechet các hàm liên tục từ { } + vào E với họ nửa được định nghĩa như sau: x n = sup x ( t ) : t Î [ 0, n ] , n Î * . Cho X = C ( [ - r , ¥ ) , E ) là không gian các hàm liên tục từ [ -r , ¥ ) vào E . Với mọi x Î X và t ³ 0 đặt xt Î Cr định nghĩa bởi xt (q ) = x ( t + q ) , q Î [ -r ,0] . Xét phương trình 105 Created by Simpo PDF Creator Pro (unregistered version) Số 24 năm 2010 Tạp chí KHOA HỌC ĐHSP TP .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.