TAILIEUCHUNG - Korovkin type error estimates for positive linear operators involving some special functions

In the present paper, we introduce a new sequence of linear positive operators with the help of generating functions. We obtain some Korovkin type approximation properties for these operators and compute rates of convergence by means of the first and second order modulus of continuities and Peetre’s K-functional. | Turk J Math 33 (2009) , 41 – 53. ¨ ITAK ˙ c TUB doi: Korovkin Type Error Estimates for Positive Linear Operators Involving Some Special Functions Og¨ un Do˘gru and Esra Erku¸s-Duman Abstract In the present paper, we introduce a new sequence of linear positive operators with the help of generating functions. We obtain some Korovkin type approximation properties for these operators and compute rates of convergence by means of the first and second order modulus of continuities and Peetre’s K -functional. In order to obtain explicit expressions for the first and second moment of our operators, we obtain a functional differential equation including our operators. Furthermore, we deal with a modification of our operators converging to integral of function f on the interval (0, 1). Key Words: Positive linear operators, Korovkin-Bohman theorem, Bernstein power series, generating function, Pochhammer symbol, hypergeometric function, Peetre’s K -functional, first and second order modulus of continuities, functional differential equation. 1. Introduction The study of the Korovkin-Bohman type approximation theory is a well established area of active research (see, ., [4, 6, 14]). Especially, it has connections not only with classical approximation theory, but also with other branches of mathematics, such as functional analysis, harmonic analysis, measure theory, probability theory. Cheney and Sharma [8], first introduced a new linear positive operators with the help of generating function expansion of Laguerre polynomial. Recently, two different generalizations of linear positive operators involving some generating functions have been introduced, and Korovkin type error estimates and their rates of convergences have been obtained (see [3, 4]). We now turn to introducing our operators used in this paper. Consider a new sequence of linear positive operators for x ∈ [0, a] , a < 1, t ∈ [0, b], b ∈ R+ , ∞ (Ln f)(x, t) = 1 k (n) f( )g (t)xk , Fn (x, t) cn +

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.