# TAILIEUCHUNG - Sufficient conditions for univalence obtained by using second order linear strong differential subordinations

## In this paper we study the second order linear strong differential subordinations. Our results may be applied to deduce sufficient conditions for univalence in the unit disc, such as starlikeness, convexity, alpha-convexity, close-to-convexity respectively. | Turk J Math 34 (2010) , 13 – 20. ¨ ITAK ˙ c TUB doi: Suﬃcient conditions for univalence obtained by using second order linear strong diﬀerential subordinations Georgia Irina Oros Abstract The concept of diﬀerential subordination was introduced in  by . Miller and . Mocanu and the concept of strong diﬀerential subordination was introduced in ,  by . Antonino and S. Romaguera. In  we have studied the strong diﬀerential subordinations in the general case and in  we have studied the ﬁrst order linear strong diﬀerential subordinations. In this paper we study the second order linear strong diﬀerential subordinations. Our results may be applied to deduce suﬃcient conditions for univalence in the unit disc, such as starlikeness, convexity, alpha-convexity, close-to-convexity respectively. Key Words: Analytic function, diﬀerential subordination, strong diﬀerential subordination, linear strong diﬀerential subordinations, second order linear strong diﬀerential subordinations. 1. Introduction Let H = H(U ) denote the class of analytic functions in U . For a positive integer n and a ∈ C, let H[a, n] = {f ∈ H; f(z) = a + an z n + an+1 z n+1 + . . . , z ∈ U }. Let A be the class of functions f of the form f(z) = z + a2 z 2 + a3 z 3 + . . . , z ∈ U, which are analytic in the unit disk. In addition, we need the classes of convex, alpha-convex, close-to-convex and starlike (univalent) functions given respectively by zf (z) K = f ∈ A; Re + 1 > 0, z ∈ U , f (z) f(z)f (z) = 0, Mα = f ∈ A, z zf (z) zf (z) Re (1 − α) +α 1+ > 0, z ∈ U f(z) f (z) 2000 AMS Mathematics Subject Classiﬁcation: 30C45, 34A30. 13 OROS C = {f ∈ A, Re f (z) > 0, z ∈ U }, and S ∗ = {f ∈ A, Re zf (z)/f(z) > 0}. In order to prove our main results we use the following deﬁnitions and lemmas. Deﬁnition 1 ,  Let H(z, ξ) be analytic in U × U and let f(z) analytic and univalent in U . The function H(z, ξ) is strongly subordinate .

TÀI LIỆU LIÊN QUAN
13    6    0
56    6    0
9    5    0
9    10    0
26    9    0
111    6    0
17    6    0
8    6    0
TÀI LIỆU XEM NHIỀU
24    2549    24
3    2468    59
8    2137    10
29    2034    20
165    1819    1
35    1798    43
2    1770    10
64    1725    6
1    1656    7
15    1653    3
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
9    7    0    27-10-2020
50    17    0    27-10-2020
21    29    0    27-10-2020
5    10    0    27-10-2020
11    6    0    27-10-2020
7    6    0    27-10-2020
5    8    0    27-10-2020
8    6    0    27-10-2020
10    8    0    27-10-2020
41          27-10-2020
TÀI LIỆU HOT
580    1336    125
171    745    116
21    578    98
312    174    98
16    619    94
3    2468    59
116    111    57
37    186    55
51    331    55
17    177    52