TAILIEUCHUNG - Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - Sở GD&ĐT Bắc Ninh
Tham khảo "Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2013-2014 - Sở GD&ĐT Bắc Ninh" để có tài liệu chất lượng ôn thi cho kì thi tuyển sinh sắp tới, các bạn cùng thực hành giải đề thi trên có đáp án chi tiết giúp bạn tiện theo dõi và ôn tập làm bài hiệu quả. | UBND TỈNH BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN NĂM HỌC 2013 – 2014 Môn thi: Toán (Dành cho tất cả thí sinh) Thời gian làm bài: 120 phút (Không kể thời gian giao đề) Ngày thi: 20 tháng 6 năm 2013 Câu 1. (2,0 điểm) a) Giải phương trình: 2 x 3 0. b) Với giá trị nào của x thì biểu thức x 5 xác định? c) Rút gọn biểu thức: A 2 2 . 2 2 . 2 1 2 1 Câu 2. (2,0 điểm) Cho hàm số: y mx 1 (1), trong đó m là tham số. a) Tìm m để đồ thị hàm số (1) đi qua điểm A(1;4) . Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên ? b) Tìm m để đồ thị hàm số (1) song song với đường thẳng d: y m 2 x m 1. Câu 3. (1,5 điểm) Một người đi xe đạp từ A đến B cách nhau 36 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 3 km/h, vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. Câu 4. (3,0 điểm) Cho nửa đường tròn đường kính BC, trên nửa đường tròn lấy điểm A (khác B và C). Kẻ AH vuông góc với BC (H thuộc BC). Trên cung AC lấy điểm D bất kì (khác A và C), đường thẳng BD cắt AH tại I. Chứng minh rằng: a) IHCD là tứ giác nội tiếp; b) AB2 = ; c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên một đường thẳng cố định khi D thay đổi trên cung AC. Câu 5. (1,5 điểm) a) Tìm tất cả các bộ số nguyên dương ( x; y ) thỏa mãn phương trình: x 2 2 y 2 3 xy 2 x 4 y 3 0. b) Cho tứ giác lồi ABCD có BAD và BCD là các góc tù. Chứng minh rằng AC BD. ------------Hết-----------(Đề này gồm có 01 trang) Họ và tên thí sinh: Số báo danh: . UBND TỈNH BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO Câu 1 a) (0,5 điểm) (2,0 điểm) Ta có 2 x 3 3 x 2 b) (0,5 điểm) HƯỚNG DẪN CHẤM ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN NĂM HỌC 2013 – 2014 Môn thi: Toán (Dành cho tất cả thí sinh) Lời giải sơ lược x 5 xác định khi x 5 0 x 5 Điểm 0,25 0,25 0,25 0,25 c) (1,0 điểm) A= 2( 2 1) 2( 2 1) . 2 1 2 1 0,5 0,5 Vì m 3 0 nên
đang nạp các trang xem trước