TAILIEUCHUNG - Vấn đề 3: Phương trình bậc hai

Nhằm giúp các bạn có thêm tài liệu phục vụ nhu cầu học tập và nghiên cứu, nội dung tài liệu vấn đề 3 "Phương trình bậc hai" dưới đây. Nội dung tài liệu giới thiệu đến các bạn các kiến thức, bài tập có hướng dẫn về phương trình bậc hai. Hy vọng đây là tài liệu tham khảo hữu ích cho các bạn. | vấn đề 3 PIII OXG TRÌyil BẬC HAI I. KIẾN THỨC CẦN NHỚ 1. Phương trình bâc hai a. Cho phương trình ax2 bx c 0 a 0 A b2 -4ac A 0 vô nghiêm có 2 nghiệm x1 x2thì b A 0 có nghiêm kép X x2 --7 2a b VÃ A 0 Có 2 nghiêm phân biệt Xj 2 - - 2a b. Định lý Viete Nêii phương trình ax2 bx c 0 a 0 b X1 x2 -ỹ a c X X - a 2. Dấu của tam thực bâc hai f x ax2 bx c a 0 a. Định lý thuận A 0 f x luôn cùng dấu với a o af x 0 Vx e R b b A 0 f x cùng dấu với a với mọi X - V và f -V 0 2a 2a A 0 f x có 2 nghiệm phân biệt X x2 Bảng xét dấu X -co Xj X co f x cùng dấu a 0 trái dâu a 0 cùng dâit a b. Định lý đảo về dấu crìa tam thức Cho tam thức f x ax2 bx c a 0 và một số thực a . T x có 2 nghiệm x2 af oc 0o I Xj a x2 12 ÍA 0 f x có 2 nghiệm Xj x2 af oc 0 ai xbx2 3. Điều kiên để tam thức không đổi dâu trên R Cho f x ax2 bx c a 0 f x 0 Vx e R ja 0 a 0 f x 0 Vx e R Ja 0 a 0 f x 0 Vx e R ía 0 Ja 0 f x 0 Vx e R ía 0 J A 0 Nếu chưa có a 0 thì ta phải xét trường hợp a 0. 4. So sánh nghiêm của phương trình bâc hai vói hai sô cho trước. Cho phương trình f x ax2 bx c 0 a 0 và hai sô oc P oc P Xj oc p x2 c jaf oc 0 af p 0 Xj oc x2 p Jaf oc 0 af p 0 a Xj p x2 c Jaf oc 0 af p 0 Xj oc x2 p V a Xj p x2 o phương trình có 2 nghiệm phân biệt và chỉ có một nghiệm thuộc oc P a i0 13 Phương trình có 2 nghiệm x1 x2 và a X x2 p af oc 0 af P 0 Ậ-a 0 2 -p 0 II. Các ví dụ Ví du 1 Địnhmđể phương trình X2 2 m-3 x m-13 0 có 2 nghiệm. x1 x2 và XịX2 -X2 -x2 đạt giá trị lớn nhất. Giải Ta có A m -3 2 - m-13 m2 -7m 22 0 Vm vì A 49-88 0 . fx x2 -2 m-3 6-2m Định lý viete cho xịX2 m-13 xlx2 - X1 - x2 xlx2 - X1 x2 3xjX2 - Xj x2 2 3 m -13 - 6 - 2m 2 -4m2 27m -75 - 4m2 - 27m 75 Y 27 Y27V c 27 -4lm- -l 4 8 I -75 4l -l -75 Vậy max x1x2 -X2 x2 4 yj 75 m 14 Ví du 2 Định m để phương trình X2 - 2mx 2 - m 0 có 2 nghiệm Xị x2 và X2 x đạt giá trị nhỏ nhất. Giải Phương trình có 2 nghiệm o A m2 - 2 - m m2 T m - 2 0 o m -2 V m 1 . fx TXọ 2m Định lý viete 1 1X1X2 2-m X2 x Xj x2 2 - 2xjX2 4m2 - 2 2 - m 4m2 2m - 4 Xét hàm số f x 4m2 2m - 4 với m -2

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.