TAILIEUCHUNG - DSP applications using C and the TMS320C6X DSK (P4)

Finite Impulse Response Filters • • • Introduction to the z-transform Design and implementation of finite impulse response (FIR) filters Programming examples using C and TMS320C6x code The z-transform is introduced in conjunction with discrete-time signals. Mapping from the s-plane, associated with the Laplace transform, to the z-plane, associated with the z-transform, is illustrated. FIR filters are designed with the Fourier series method and implemented by programming a discrete convolution equation. Effects of window functions on the characteristics of FIR filters are covered. INTRODUCTION TO THE Z-TRANSFORM The z-transform is utilized for the analysis of discrete-time signals, similar to the Laplace transform for. | DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing Copyright 2002 John Wiley Sons Inc. ISBNs 0-471-20754-3 Hardback 0-471-22112-0 Electronic 4 Finite Impulse Response Filters Introduction to the -transform Design and implementation of finite impulse response FIR filters Programming examples using C and TMS320C6x code The -transform is introduced in conjunction with discrete-time signals. Mapping from the v-plane associated with the Laplace transform to the -plane associated with the -transform is illustrated. FIR filters are designed with the Fourier series method and implemented by programming a discrete convolution equation. Effects of window functions on the characteristics of FIR filters are covered. INTRODUCTION TO THE Z-TRANSFORM The -transform is utilized for the analysis of discrete-time signals similar to the Laplace transform for continuous-time signals. We can use the Laplace transform to solve a differential equation that represents an analog filter or the -transform to solve a difference equation that represents a digital filter. Consider an analog signal x t ideally sampled xs t x t S t - kT k 0 where 8 t - kT is the impulse delta function delayed by kT and T HFS is the sampling period. The function xv t is zero everywhere except at t kT. The Laplace transform of xv t is 102 Introduction to the z-Transform 103 Xs s j xs t e stdt jo x t d t x t d t - T e-stdt From the property of the impulse function f f t d t - kT dt f kT Xs s in becomes Xs s x 0 x T e -sT x 2T e-2 sT x nT e-nsT n 0 Let z e T in which becomes X z x nT z-n n 0 Let the sampling period T be implied then x nT can be written as x n and becomes X z x n z-n ZT x n n 0 which represents the z-transform ZT of x n . There is a one-to-one correspondence between x n and X z making the z-transform a unique transformation. Exercise ZT of Exponential Function x n enk The ZT of x n enk n 0 and k a constant is X z enkz-n ekz-r n 0 n 0 Using the .

TÀI LIỆU LIÊN QUAN
31    426    56
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.