TAILIEUCHUNG - Data Mining and Knowledge Discovery Handbook, 2 Edition part 57

Data Mining and Knowledge Discovery Handbook, 2 Edition part 57. Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery. | 540 Yoav Benjamini and Moshe Leshno Storey . Taylor . and Siegmund D. 2004 . Strong control conservative point estimation and simultaneous conservative consistency of false discovery rates A unified approach. Journal of the Royal Statistical Society Series B 66 187-205. Therneau . and Grambsch . 2000 . Modeling Survival Data Extending the Cox Model. Springer. Tibshirani R. and Knight K. 1999 . The covariance inflation criterion for adaptive model selection. Journal of the Royal Statistical Society Series B 61 Part 3 529-546. Zembowicz R. and Zytkov . 1996 . From contingency tables to various froms of knowledge in databases. In . Fayyad R. Uthurusamy G. Piatetsky-Shapiro and P. Smyth editors Advances in Knowledge Discovery and Data Mining pp. 329-349 . MIT Press. Zytkov . and Zembowicz R. 1997 . Contingency tables as the foundation for concepts concept hierarchies and rules The 49er system approach. Fundamenta Informaticae 30 383-399. 26 Logics for Data Mining Petr Hajek Institute of Computer Science Academy of Sciences of the Czech Republic 182 07 Prague Czech Republic hajek@ Summary. Systems of formal symbolic logic suitable for Data Mining are presented main stress being put to various kinds of generalized quantifiers. Key words logic Data Mining generalized quantifiers GUHA method Introduction Data Mining as presently understood is a broad term including search for association rules classification regression clustering and similar. Here we shall restrict ourselves to search for rules in a rather general sense namely general dependencies valid in given data and expressed by formulas of a formal logical language. The present theoretical approach is the result of a long development of the GUHA method of automated generation of hypotheses General Unary Hypotheses Automaton see a paragraph in Section but is believed to be fully relevant for contemporary mining of association rules and its possible generalization. See Agrawal et al.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.