TAILIEUCHUNG - Báo cáo khoa học: "Does more data always yield better translations?"

Nowadays, there are large amounts of data available to train statistical machine translation systems. However, it is not clear whether all the training data actually help or not. A system trained on a subset of such huge bilingual corpora might outperform the use of all the bilingual data. This paper studies such issues by analysing two training data selection techniques: one based on approximating the probability of an indomain corpus; and another based on infrequent n-gram occurrence. Experimental results not only report significant improvements over random sentence selection but also an improvement over a system trained with the whole. | Does more data always yield better translations Guillem Gasco Martha-Alicia Rocha German Sanchis-Trilles Jesus Andres-Ferrer and Francisco Casacuberta Departament de Sistemes Informatics i Computacio Universitat Politecnica de Valencia Cami de Vera s n 46022 Valencia Spain ggasco mrocha gsanchis jandres fcn @ Abstract Nowadays there are large amounts of data available to train statistical machine translation systems. However it is not clear whether all the training data actually help or not. A system trained on a subset of such huge bilingual corpora might outperform the use of all the bilingual data. This paper studies such issues by analysing two training data selection techniques one based on approximating the probability of an indomain corpus and another based on infrequent n-gram occurrence. Experimental results not only report significant improvements over random sentence selection but also an improvement over a system trained with the whole available data. Surprisingly the improvements are obtained with just a small fraction of the data that accounts for less than of the sentences. Afterwards we show that a much larger room for improvement exists although this is done under non-realistic conditions. 1 Introduction Globalisation and the popularisation of the Internet have lead to a rapid increase in the amount of bilingual corpora available. Entities such as the European Union the United Nations and other multinational organisations need to translate all the documentation they generate. Such translations happen every day and provide very large multilingual corpora which are oftentimes difficult to process and significantly increase the computational requirements needed to train statistical machine translation SMT systems. For instance the corpora made available for recent machine translation evaluations are in the order of 1 billion running words Callison-Burch et al. 2010 . However two main problems arise when attempting to use this huge pool

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
10    171    3    26-11-2024
337    139    1    26-11-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.