TAILIEUCHUNG - Báo cáo khoa học: "Sentiment Summarization: Evaluating and Learning User Preferences"

We present the results of a large-scale, end-to-end human evaluation of various sentiment summarization models. The evaluation shows that users have a strong preference for summarizers that model sentiment over non-sentiment baselines, but have no broad overall preference between any of the sentiment-based models. However, an analysis of the human judgments suggests that there are identifiable situations where one summarizer is generally preferred over the others. | Sentiment Summarization Evaluating and Learning User Preferences Kevin Lerman Columbia University New York NY klerman@ Sasha Blair-Goldensohn Google Inc. New York NY sasha@ Ryan McDonald Google Inc. New York NY ryanmcd@ Abstract We present the results of a large-scale end-to-end human evaluation of various sentiment summarization models. The evaluation shows that users have a strong preference for summarizers that model sentiment over non-sentiment baselines but have no broad overall preference between any of the sentiment-based models. However an analysis of the human judgments suggests that there are identifiable situations where one summarizer is generally preferred over the others. We exploit this fact to build a new summarizer by training a ranking SVM model over the set of human preference judgments that were collected during the evaluation which results in a 30 relative reduction in error over the previous best summarizer. 1 Introduction The growth of the Internet as a commerce medium and particularly the Web phenomenon of user-generated content have resulted in the proliferation of massive numbers of product service and merchant reviews. While this means that users have plenty of information on which to base their purchasing decisions in practice this is often too much information for a user to absorb. To alleviate this information overload research on systems that automatically aggregate and summarize opinions have been gaining interest Hu and Liu 2004a Hu and Liu 2004b Gamon et al. 2005 Popescu and Etzioni 2005 Carenini et al. 2005 Carenini et al. 2006 Zhuang et al. 2006 Blair-Goldensohn et al. 2008 . Evaluating these systems has been a challenge however due to the number of human judgments required to draw meaningful conclusions. Often systems are evaluated piecemeal selecting pieces that can be evaluated easily and automatically Blair-Goldensohn et al. 2008 . While this technique produces meaningful evaluations of

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.