TAILIEUCHUNG - Báo cáo khoa học: "Optimizing Informativeness and Readability for Sentiment Summarization"

We propose a novel algorithm for sentiment summarization that takes account of informativeness and readability, simultaneously. Our algorithm generates a summary by selecting and ordering sentences taken from multiple review texts according to two scores that represent the informativeness and readability of the sentence order. The informativeness score is defined by the number of sentiment expressions and the readability score is learned from the target corpus. We evaluate our method by summarizing reviews on restaurants. . | Optimizing Informativeness and Readability for Sentiment Summarization Hitoshi Nishikawa Takaaki Hasegawa Yoshihiro Matsuo and Genichiro Kikui NTT Cyber Space Laboratories NTT Corporation 1-1 Hikari-no-oka Yokosuka Kanagawa 239-0847 Japan i - kikui-genichiro I Abstract We propose a novel algorithm for sentiment summarization that takes account of informativeness and readability simultaneously. Our algorithm generates a summary by selecting and ordering sentences taken from multiple review texts according to two scores that represent the informativeness and readability of the sentence order. The informativeness score is defined by the number of sentiment expressions and the readability score is learned from the target corpus. We evaluate our method by summarizing reviews on restaurants. Our method outperforms an existing algorithm as indicated by its ROUGE score and human readability experiments. 1 Introduction The Web holds a massive number of reviews describing the sentiments of customers about products and services. These reviews can help the user reach purchasing decisions and guide companies business activities such as product improvements. It is however almost impossible to read all reviews given their sheer number. These reviews are best utilized by the development of automatic text summarization particularly sentiment summarization. It enables us to efficiently grasp the key bits of information. Sentiment summarizers are divided into two categories in terms of output style. One outputs lists of sentences Hu and Liu 2004 Blair-Goldensohn et al. 2008 Titov and McDonald 2008 the other outputs texts consisting of ordered sentences Carenini et al. 2006 Carenini and Cheung 2008 Lerman et al. 2009 Lerman and McDonald 2009 . Our work lies in the latter category and a typical summary is shown in Figure 1. Although visual representations such as bar or rader charts This restaurant offers customers .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.