TAILIEUCHUNG - Báo cáo khoa học: "Determining the placement of German verbs in English–to–German SMT"

When translating English to German, existing reordering models often cannot model the long-range reorderings needed to generate German translations with verbs in the correct position. We reorder English as a preprocessing step for English-to-German SMT. We use a sequence of hand-crafted reordering rules applied to English parse trees. The reordering rules place English verbal elements in the positions within the clause they will have in the German translation. This is a difficult problem, as German verbal elements can appear in different positions within a clause (in contrast with English verbal elements, whose positions do not vary as much). We. | Determining the placement of German verbs in English-to-German SMT Anita Gojun Alexander Fraser Institute for Natural Language Processing University of Stuttgart Germany gojunaa fraser @ Abstract When translating English to German existing reordering models often cannot model the long-range reorderings needed to generate German translations with verbs in the correct position. We reorder English as a preprocessing step for English-to-German SMT. We use a sequence of hand-crafted reordering rules applied to English parse trees. The reordering rules place English verbal elements in the positions within the clause they will have in the German translation. This is a difficult problem as German verbal elements can appear in different positions within a clause in contrast with English verbal elements whose positions do not vary as much . We obtain a significant improvement in translation performance. 1 Introduction Phrase-based SMT PSMT systems translate word sequences phrases from a source language into a target language performing reordering of target phrases in order to generate a fluent target language output. The reordering models such as for example the models implemented in Moses Koehn et al. 2007 are often limited to a certain reordering range since reordering beyond this distance cannot be performed accurately. This results in problems of fluency for language pairs with large differences in constituent order such as English and German. When translating from English to German verbs in the German output are often incorrectly left near their position in English creating problems of fluency. Verbs are also often omitted since the distortion model cannot move verbs to positions which are licensed by the German language model making the translations difficult to understand. A common approach for handling the long-range reordering problem within PSMT is performing syntax-based or part-of-speech-based POS-based reordering of the input as a .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.