TAILIEUCHUNG - Báo cáo khoa học: "HIDDEN UNDERSTANDING MODELS OF NATURAL LANGUAGE"

This hybrid system participated in the 1993 ATIS natural language evaluation. Although only four months old, the scores achieved by the combined system were quite respectable. Because of differences between language understanding and speech recognition, significant changes are required in the hidden Markov model methodology. Unlike speech, where each phoneme results in a local sequence of spectra, the relation between the meaning of a sentence and the sequence of words is not a simple linear sequential model. . | HIDDEN UNDERSTANDING MODELS OF NATURAL LANGUAGE Scott Miller College of Computer Science Northeastern University Boston MA 02115 millers@ Robert Bobrow Robert Ingria Richard Schwartz BBN Systems and Technologies 70 Fawcett St. Cambridge MA 02138 rusty ingria schwartz@ Abstract We describe and evaluate hidden understanding models a statistical learning approach to natural language understanding. Given a string of words hidden understanding models determine the most likely meaning for the string. We discuss 1 the problem of representing meaning in this framework 2 the structure of the statistical model 3 the process of training the model and 4 the process of understanding using the model. Finally we give experimental results including results on an ARPA evaluation. 1 Introduction Hidden understanding models are an innovative class of statistical mechanisms that given a string of words determines the most likely meaning for the string. The overall approach represents a substantial departure from traditional techniques by replacing hand-crafted grammars and rules with statistical models that are automatically learned from examples. Hidden understanding models were primarily motivated by techniques that have been extremely successful in speech recognition especially hidden Markov models Baum 72 . Related techniques have previously been applied to the problem of identifying concept sequences within a sentence Pieraccini et al. 91 . In addition the approach contains elements of other natural language processing techniques including semantic grammars Waltz 78 Hendrix 78 augmented transition networks ATNs Woods 70 probabilistic parsing Fujisaki et al. 89 Chitrao and Grishman 90 Seneff 92 and automatic grammar induction Perefra and Schabes 92 . Hidden understanding models are capable of learning a variety of meaning representations ranging from simple domain-specific representations to ones at a level of detail and sophistication comparable to current .

TÀI LIỆU MỚI ĐĂNG
13    163    1    09-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.