TAILIEUCHUNG - Báo cáo khoa học: "Efficiency, Robustness and Accuracy in Picky Chart Parsing*"

be used for efficiency by providing a best-first search heuristic to order the parsing agenda. This paper proposes an agenda-based probabilistic chart parsing algorithm which is both robust and efficient. The algorithm, 7)icky 1, is considered robust because it will potentially generate all constituents produced by a pure bottom-up parser and rank these constituents by likelihood. The efficiency of the algorithm is achieved through a technique called probabilistic prediction, which helps the algorithm avoid worst-case behavior. . | Efficiency Robustness and Accuracy in Picky Chart Parsing David M. Magerman Stanford University Stanford CA 94305 magerm an@cs. st anfor d. edu Carl Weir Paramax Systems Paoli PA 19301 weir@. com ABSTRACT This paper describes Picky a probabilistic agenda-based chart parsing algorithm which uses a technique called probabilistic prediction to predict which grammar rules are likely to lead to an acceptable parse of the input. Using a subopti-mal search method Picky significantly reduces the number of edges produced by CKY-like chart parsing algorithms while maintaining the robustness of pure bottom-up parsers and the accuracy of existing probabilistic parsers. Experiments using Picky demonstrate how probabilistic modelling can impact upon the efficiency robustness and accuracy of a parser. 1. Introduction This paper addresses the question Why should we use probabilistic models in natural language understanding There are many answers to this question only a few of which are regularly addressed in the literature. The first and most common answer concerns ambiguity resolution. A probabilistic model provides a clearly defined preference rule for selecting among grammatical alternatives . the highest probability interpretation is selected . However this use of probabilistic models assumes that we already have efficient methods for generating the alternatives in the first place. While we have O n3 algorithms for determining the grammaticality of a sentence parsing as a component of a natural language understanding tool involves more than simply determining all of the grammatical interpretations of an input. In order for a natural language system to process input efficiently and robustly it must process all intelligible sentences grammatical or not while not significantly reducing the system s efficiency. This observation suggests two other answers to the central question of this paper. Probabilistic models offer a convenient scoring method for partial .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.